19: Pathogenic Gram-Positive Cocci and Bacilli

1. Gram-positive pathogens
 - Color reaction ________________________________
 - Shapes __________________ and ___________________
 - Genera of cocci-shaped organisms:
 - ________________________________
 - ________________________________
 - Genera of bacilli-shaped organisms:
 - ________________________________
 - ________________________________
 - ________________________________
 - ________________________________

2. *Staphylococcus*
 - Normal members of every human’s microbiota
 - Can be opportunistic pathogens
 - Gram stain reaction
 - ________________________________
 - ________________________________
 - Cell division occurs along different planes and the daughter cells remain attached to one another
 - Salt-tolerant
 - Tolerates salt present on human skin
 - Culture considerations
 - Tolerant of desiccation
 - Survival on environmental surfaces (fomites)
 - Infection control
 - Species commonly associated with staphylococcal diseases in humans
 - *Staphylococcus aureus*:
 - More virulent strain
- Produces a variety of conditions depending on the site of infection
- Produces many extracellular enzymes/toxins

Staphylococcus epidermidis:
- Normal microbiota of human skin
-

3. Pathogenicity
- “Staph’ infections result
-
- Entry of only a few hundred bacteria can result in disease
- Pathogenicity results from three features
 - Structural defenses against phagocytosis
 - Protein A
 - Bound coagulase
 - Converts fibrinogen to fibrin to form blood clots
 - Fibrin clots hide the bacteria from phagocytic cells
 - Polysaccharide slime layers
 - Inhibit chemotaxis of and phagocytosis by leukocytes
 - Attachment of Staphylococcus to artificial surfaces
 - Enzymes
- Triggers blood clotting

- Dissolves fibrin threads in blood clots, allowing *S. aureus* to free itself from clots

- Breaks down penicillin

- Resistance to β-lactam antimicrobial drugs

- **Toxins**
 - *Staphylococcus aureus* produces toxins more frequently than *S. epidermidis*
 - Cytolytic toxins
 - Disrupts cytoplasmic membrane of a variety of cells
 - Leukocidin can lyse leukocytes specifically
 - Exfoliative toxins
 - Causes the patient’s skin cells to separate from each other and slough off the body
 - Toxic-shock-syndrome toxin
 - Causes toxic shock syndrome
 - Enterotoxins
 - Stimulate the intestinal muscle contractions, nausea, and intense vomiting associated with staphylococcal food poisoning

4. **Staphylococcal diseases**
 - Noninvasive disease
 - Food poisoning from the ingestion of enterotoxin-contaminated food
 - Cutaneous disease
 - Scalded Skin Syndrome (Fig. 19.2)
 - Impetigo (Fig. 19.3)
 - Folliculitis, furuncles, boils
 - Systemic diseases
 - Bacteremia – presence of bacteria in the blood
 - Endocarditis – occurs when bacteria attack the lining of the heart
Pneumonia – inflammation of the lungs in which the alveoli and bronchioles become filled with fluid

Osteomyelitis – inflammation of the bone marrow and the surrounding bone

Toxic shock syndrome – TSS toxin absorbed in blood, causing shock (Fig. 19.4)

5. Diagnosis, treatment, and prevention
 - Diagnosis: Detection of Gram-positive bacteria in grapelike arrangements isolated from pus, blood, or other fluids
 - Treatment: Methicillin is the drug of choice to treat staphylococcal infections
 - Semisynthetic form of penicillin not inactivated by β-lactamase
 - Caution: MRSA
 - Prevention
 - Hand antisepsis is the most important measure in preventing nosocomial infections
 - Also important is the proper cleansing of wounds and surgical openings, aseptic use of catheters or indwelling needles, an appropriate use of antiseptics

6. Streptococcus
 - Gram stain reaction
 - __
 - __
 - Often categorized based on the Lancefield classification
 - Rebecca Lancefield – Nobel prize
 - Serotype based on the bacteria’s antigens (surface polysaccharides)
 - Lancefield groups A and B include the significant streptococcal pathogens of humans

7. Group A Streptococcus: Streptococcus pyogenes
 - Colonial morphology: __
 - __
 - Pathogenic strains often form a capsule
 - Group A streptococci generally only cause disease in certain situations
 - __
 - __
 - __
8. Pathogenicity
 - Structural components
 - interferences with opsonization and lysis of the bacteria
 - Acts to camouflage the bacteria
 - Enzymes
 - Facilitate spread of organism through tissues
 - Pyrogenic toxins that stimulate macrophages and helper T cells to release cytokines
 - Streptolysins lyse __________, __________, __________

9. Group A streptococcal diseases
 - ____________________________ ("strep throat") – inflammation of pharynx (Fig. 19.6)
 - ____________________________ – rash begins on the chest, spreads across body
 - ____________________________ – inflammation leading to damage of heart valves
 muscle
 - ____________________________ – inflammation of the glomeruli and nephrons which
 obstruct blood flow through the kidneys
 - ____________________________ – confined, pus-producing lesion that usually occurs
 on the face, arms, or legs
 - Streptococcal toxic shock syndrome – bacteremia and severe multisystem infections
 - Necrotizing fasciitis – toxin production destroys tissues and eventually muscle and fat tissue
 (Fig. 19.8)

10. Diagnosis, treatment, and prevention
 - Diagnosis
 - Gram-positive bacteria in short chains or pairs
 - β-hemolytic colonies on blood agar
- Immunological tests for group A streptococcal antigens
- Streptococci normally in the pharynx – isolation of little diagnostic value
- Treatment: Penicillin
- Prevention
 - Strain-specific immunity

11. Group B Streptococcus: *Streptococcus agalactiae*
 - Gram-positive cocci that divide to form chains
 - Distinguished from group A streptococcus by its buttery colonies and smaller zone of beta-hemolysis on blood agar plates and its resistance to bacitracin
 - Normally colonizes the lower gastrointestinal, genital, and urinary tracts
 - Pathogenicity
 - Often infects newborns who have not yet formed type-specific antibodies and whose mothers are uninfected (and so do not provide passive immunity)
 - Produces various enzymes whose roles in virulence not understood
 - Diseases
 - Neonatal bacteremia, meningitis, pneumonia
 - Older people at risk from group B streptococcal infections

12. Alpha-hemolytic streptococci: Viridans group
 - Lack group-specific carbohydrates; not grouped by Lancefield system
 - Many produce green pigment on blood agar
 - Type of hemolysis ______________________________
 - Normally inhabit mouth, pharynx, GI tract, genital tract, and urinary tract
 - ______________________________: causes dental caries and dental plaques
 - ______________________________: meningitis and endocarditis

13. *Streptococcus pneumoniae* (Fig. 19.9)
 - Gram-positive cocci forms pairs and short chains
 - α-hemolytic colonies on blood agar when grown aerobically; β-hemolytic colonies when grown anaerobically
 - Normally colonizes mouth and pharynx but can cause disease if it travels to the lungs
 - Disease is highest in children and the elderly
 - Pathogenicity: ______________________________
 - Protects bacteria from digestion after endocytosis
 - Diseases
 - Pneumococcal pneumonia – bacteria multiply in the alveoli of the lower lung causing damage to alveolar lining and producing an inflammatory response
- Sinusitis and otitis media – bacteria invade sinuses or middle ear, often after viral infection
- Bacteremia and endocarditis – bacteria in bloodstream or lining of the heart
- Pneumococcal meningitis – bacteria that have spread to the meninges

14. Diagnosis, Treatment, and Prevention
- Diagnosis: Gram-strain of sputum smears
- Treatment: Penicillin
- Prevention: Vaccine made from purified capsular material
 - Provides long lasting immunity in normal adults
 - Not as effective in children, elderly, or AIDS patients

15. *Bacillus*
- Gram-positive bacilli, occurs singly, in pairs, or in chains
- ________________________________
 - _______________ is a strict pathogen of animals and humans
- Primarily a disease of herbivores, but humans can contract the disease from infected animals
- Humans contract the bacteria via one of three routes
 - Inhalation of spores
 - Inoculation of spores into the body through a break in the skin
 - Ingestion of spores

- Pathogenicity – Anthrax toxin

- Anthrax only disease caused by *Bacillus anthracis*
- Three clinical manifestations of Anthrax
 - Gastrointestinal anthrax - rare in humans
 - Intestinal hemorrhaging and eventually death
 - Cutaneous anthrax
 - Produces a ulcer called an eschar and toxemia (Fig. 19.12)
 - Inhalation anthrax - rare in humans
 - Spores germinate in lungs, secrete toxins absorbed into bloodstream
- High mortality rate

16. **Clostridium**
 - **Anaerobic** Gram-positive, endospore-forming bacillus
 - Compare and contrast with *Bacillus* species

 - Ubiquitous in soil, water, and the gastrointestinal tracts of animals and humans
 - The presence of endospores allows for survival in harsh conditions

17. **Clostridium perfringens**
 - Commonly grows in the digestive tracts of animals and humans
 - Produces 11 toxins that have various effects on the body and can result in irreversible damage

 Diseases
 - Food poisoning
 - Benign disease characterized by abdominal cramps and watery diarrhea
 - Gas gangrene (Fig 19.13)
 - Endospores enter body through traumatic event
 - Endospores germinate, cause necrosis accompanied by foul-smelling gaseous bacterial waste products

 Diagnosis
 - >10⁵ bacteria per gram of food or 10⁶ cells per gram feces indicates Clostridial food poisoning
 - Gas gangrene is usually diagnostic by itself

 Treatment
 - Food poisoning is self-limited
 - Gas gangrene is treated by removing the dead tissue and administering large doses of antitoxin and penicillin

18. **Clostridium difficile**
 - Anaerobic, endospore-forming, Gram-positive bacillus
 - Common member of the intestinal microbiota
 - Opportunistic pathogen in patients treated with broad-spectrum antimicrobial drugs

 - Minor infections can result in a self-limiting explosive diarrhea
 - Serious cases can cause ________________________
 - Perforation of the colon, leading to massive internal infection by fecal bacteria and eventual death

 Diagnosed by isolating the organism from feces or by demonstrating the presence of toxins via immunoassay
Minor infections usually resolved by discontinuing antimicrobial drug in use

Serious cases are treated with antibiotics

Proper hygiene is critical for limiting nosocomial infections

19. *Clostridium botulinum*

- Anaerobic, endospore-forming, Gram-positive bacillus
- Common in soil and water
- Botulism results when the endospores germinate and produce botulism toxin

The different botulism toxins are among the deadliest toxins known

Botulism Toxin (Fig. 19.14)

- Type of toxin __________________________
- Mechanism of action

Reaction

Diseases

- Botulism is not an infection, but an intoxication caused by the botulism toxin
- Three forms of botulism
 - **Food-borne botulism**
 - Usually occurs due to the consumption of toxin in home-canned foods or preserved fish
 - Can result in a progressive paralysis that results in death due to the inability to inhale
 - **Infant botulism**
 - Endospores ingested, germinate, and colonize the infant’s gastrointestinal tract
 - Lack of sufficient numbers of normal microbiota
 - Symptoms include constipation and “failure to thrive”;
 - Paralysis and death are rare
 - **Wound botulism**
 - Wound contaminated with endospores
 - Symptoms same as with food-borne botulism

Diagnosis

- Symptoms are diagnostic – flaccid paralysis
- Confirm by culturing the organism from food, feces, or the patient’s wound

Treatment – three approaches

- Repeated washing of the intestinal tract to remove *Clostridium*
- Administer antibodies to neutralize toxin in the blood before it binds to neurons
- Administer antimicrobial drugs to kill clostridia in infant botulism cases

- Prevention
 - __
 - __

20. *Clostridium tetani*
- Obligate anaerobic, endospore-forming, Gram-positive bacillus
- Ubiquitous in soil, dust, and the GI tract of animals and humans
- Endospores germinate, produce tetanus toxin
- Tetanus results in spasms and contractions that can result in death because patients can’t exhale

- Tetanus Toxin (Fig. 19.16, Fig. 19.17)
 - Type of toxin_____________________________________
 - Mechanism of action

- Reaction

- Diagnosis
 - Characteristic muscular contraction – spastic paralysis
 - Bacterium rarely isolated from clinical samples because it grows slowly and is sensitive to oxygen

- Treatment
 - Thorough cleaning of wounds to remove endospores
 - Passive immunization with immunoglobulin directed against the toxin
 - Administration of antimicrobials
 - Active immunization with tetanus toxoid
 - Define toxoid

- Prevention
 - Immunization with tetanus toxoid

 - Vaccine__
 - Administration timeline__

21. *Listeria*
- Gram-positive non-spore-forming, coccobacillus
- Temperature requirement__________________________
Listeria produces no toxins or enzymes
Virulence is directly related to bacteria’s ability to live within cells (Fig. 19.18)

Diagnosis
- Presence of the bacteria in the cerebrospinal fluid
- Rarely seen by Gram-staining because so few Listeria cells are required to produce disease
- Culture considerations

Treatment
- Most antimicrobial drugs inhibit Listeria

Prevention
- Difficult because the organism is ubiquitous
- Avoid undercooked vegetables, unpasteurized milk, undercooked meat, soft cheeses

22. Corynebacterium
- Ubiquitous on plants and in animals and humans
- Colonizes skin, respiratory system, and gastrointestinal, urinary, & genital tracts
- Corynebacterium diphtheriae, cause of diphtheria, is the most widely known
 - Transmitted from person to person via respiratory droplets or skin contact
 - Endemic in poor parts of the world that lack adequate immunization
 - Diphtheria toxin is responsible for the signs and symptoms of diphtheria

Disease
- Diphtheria toxin: ___
 - Infections are asymptomatic or produce mild respiratory disease in immune or partially immune individuals
 - Severe respiratory infections of non-immune patients produce the signs and symptoms of diphtheria
 - Pseudomembrane results from fluid that has thickened and adheres throughout the respiratory tract (fig. 19.20)
 - The pseudomembrane can completely occlude the respiratory passages and cause suffocation
- Cutaneous diphtheria causes cell death and formation of a pseudomembrane on the skin

- **Diagnosis**
 - Initial diagnosis is based on the presence of pseudomembrane

- **Treatment**
 - Administration of antitoxin to neutralize toxin before it binds to cells
 - Penicillin and erythromycin kills the bacteria

- **Prevention**
 - Immunization with __
 - Vaccine__
 - Administration timeline___________

23. *Mycobacterium*

- Stain reaction __
- Cell wall contains a waxy lipid called __
- The unusual cell wall results in a number of unique characteristics
 - Slow growth
 - Protection from lysis once the bacteria are phagocytized
 - Capacity for intracellular growth
 - Resistance to Gram-staining, detergents, many antimicrobial drugs, and dessication

- Three main mycobacterial diseases
 - Tuberculosis
 - Leprosy
 - Opportunistic infections in AIDS patients

- **Tuberculosis (TB)**
 - Respiratory disease caused by *Mycobacterium tuberculosis*
 - Cases are declining in the United States but it is pandemic in other parts of the world
 - Virulence factor__

 - Three types of tuberculosis (Fig 19.22)
 - Primary TB
 - Results from the initial infection with *M. tuberculosis*

 - Secondary TB
 - Reestablishment of an active infection after a period of dormancy

- Disseminated TB
 - Results when the infection spreads throughout the body

- Diagnosis
 - Tuberculin skin test identifies individuals with previous exposure to *M. tuberculosis* by the presence of a hard, red swelling at the test site
 - Chest x-rays are used to identify individuals with active disease

- Treatment
 - Treatment with common antimicrobials is difficult because the bacteria grow slowly and can live within macrophages
 - Combination therapy must be used for a number of months to treat the disease

- Prevention
 - Prophylactic use of antibacterial drugs is used to treat patients who have shown a conversion from a negative to a positive skin test or were exposed to active cases of tuberculosis
 - Immunization with BCG vaccine is used in countries where TB is common

24. Leprosy
- Caused by *Mycobacterium leprae*
- Bacteria have never been grown in cell-free culture
 - Culture
 - Cases of leprosy are becoming relatively rare
 - Transmission is via person-to-person contact or through a break in the skin

- Diagnosis
 - Based on the signs and symptoms of the disease
 - Loss of sensation in skin lesions in the case of tuberculoid leprosy
 - Disfigurement in the case of lepromatous leprosy

- Treatment
 - Treatment with a combination of antimicrobial drugs
 - Lifelong treatment is sometimes needed

- Prevention
 - Primarily prevented by limiting exposure to the pathogen
 - BCG vaccine provides some protection
25. Mycobacterial Infections in AIDS Patients
 - *Mycobacterium avium-intracellulare* is the most common mycobacterial infection among AIDS patients in the United States
 - Infections are a result of ingestion of contaminated food or water
 - Infections can simultaneously affect almost every organ and result in massive organ failure
 - Treatment is difficult due to the disseminated nature of the infection

26. *Propionibacterium*
 - Small, Gram-positive rods
 - Location: ___
 - *Propionibacterium acnes* species most commonly involved in human infections
 - Causes __
 - May also be an opportunistic pathogen
 - Treatment often involves the use of antimicrobial drugs though many cases require no treatment
 - Development of acne (Fig. 19.25)