
Experiences with Marmoset: Designing and Using
an Advanced Submission and Testing System

for Programming Courses

Jaime Spacco∗, David Hovemeyer†, William Pugh∗, Fawzi Emad∗,
Jeffrey K. Hollingsworth∗, and Nelson Padua-Perez∗

∗Dept. of Computer Science
A. V. Williams Building
University of Maryland
College Park, MD 20742 USA

{jspacco,pugh,fpe,hollings,nelson}@cs.umd.edu

†Dept. of Computer Science
Vassar College
124 Raymond Ave.
Poughkeepsie, NY 12604 USA

hovemeyer@cs.vassar.edu

ABSTRACT
We developed Marmoset, an automated submission and test-
ing system, to explore techniques to provide improved feed-
back to both students and instructors as students work on
programming assignments, and to collect data to perform
detailed research on the development processes of students.

To address the issue of feedback, Marmoset provides stu-
dents with limited access to the results of the instructor’s
private test cases using a novel token-based incentive sys-
tem. This both encourages students to start their work early
and to think critically about their work. Because students
submit early, instructors can monitor all students’ progress
on test cases, helping identify challenging or ambiguous test
cases early in order to update the project specification or de-
vote additional time in lecture or lab sessions to the difficult
test cases.

To study and better understand the development process
of students, Marmoset can be configured to transparently
capture snapshots to a central repository everytime students
save their files. These detailed development histories offer a
unique, detailed perspective of each student’s progress on a
programming assignment, from the first line of code written
and saved all the way through the final edit before the final
submission. This type of data has proven extremely valuable
many uses, such as mining new bug patterns and evaluating
existing bug-finding tools.

In this paper, we describe our initial experiences using
Marmoset in several introductory computer science courses,
from the perspectives of both instructors and students. We
also describe some initial research results from analyzing the
student snapshot database.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’06,June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006 ...$5.00.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI); K.3.2 [Computer and Information
Science Education]: Computer Science Education; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Experimentation, Human Factors, Measurement

Keywords
Testing, project submission, code snapshots

1. INTRODUCTION
In project-based programming courses, communication be-

tween students and instructors is a valuable and scarce com-
modity. Students benefit from feedback about how well they
are progressing toward meeting the project objectives. In-
structors need feedback about where in projects students
are having problems in order to make the best use of time
in lectures, discussion sections, and office hours. Unfortu-
nately, the amount of time instructors can spend interacting
with students directly is limited. Due to large enrollments,
finding time to help students can be especially challenging
in introductory programming courses. The problem is com-
pounded by the fact that many students wait too long before
starting assigned projects, or flounder because they have hit
a conceptual roadblock they can’t steer around. Such stu-
dents are at a high risk for dropping or failing the course.

Automation can help address these problems. Providing
controlled feedback to students about their progress encour-
ages them to start work early and think critically about their
work. This feedback can also direct students towards areas
of their project which need attention, and help them ask the
right questions in discussion sections and office hours. Pro-
viding feedback about student progress to instructors helps
them decide how best to use time in lectures and office hours.

We have implemented a system called Marmoset to sup-
port automatic project submission and testing, and provide
students, instructors and researchers feedback about stu-

Figure 1: Architecture of Marmoset

dent work on the programmign projects. Automatic testing
of student projects is not a new idea [9, 3, 4, 1, 7, 10], nor is
using version control repositories to record a history of stu-
dent work [6]. However, we believe that our approach is dif-
ferent from previous systems in two important ways. First,
Marmoset uses a novel technique to reward students for
starting early and thinking critically about their projects.
Second, we are not aware of any other teaching environ-
ments that capture fine-grained snapshots of student work.
These snapshots help instructors understand students’ work
habits.

In this paper, we describe experiences from using Mar-
moset in several introductory programming courses. We
have found it to be valuable for both students and instruc-
tors, and the student snapshot data we have collected has
increased our understanding of typical student programming
errors.

2. DESIGN AND FEATURES
Marmoset is a programming project submission and test-

ing system (with optional components described in Sections
2.4 and 2.5). Figure 1 shows the architecture of the system.
Students can submit their projects either by using a com-
mand line tool or by using a menu option within an IDE
such as Eclipse (the menu option being provided by a plu-
gin). The system that receives these submissions is referred
to as the submit server.

The submit server hands the submission off to a separate
build server for building and testing, and a test setup for the
project describes how the project should be tested. The test
setup contains all of the auxiliary resources needed to build
the project and execute the tests, such as libraries, data
files, and compiler directives. Because the build servers run
independently of the submit server, many build servers can
be configured to provide better throughput and redundancy.

The submit and build server can execute and record the
results of four different kinds of test cases:

• Student tests: test cases written by students

• Public tests: test cases provided to students

• Release tests: the instructor’s confidential test cases,
with results selectively made available to students be-
fore the project deadline

• Secret tests: additional confidential instructor test cases,

with results not disclosed to students until after the
project deadline

Once a project has been compiled and tested by Marmoset,
students have immediate access to the results of the student
and public test cases. Since students have direct access to
these test cases, the results should not come as a surprise.
However, if students have written code in a way that is plat-
form dependent, this can be caught by observing that the
student and public tests on the submit server yield different
results than the student sees when they test their software.

Secret tests are the traditional bulwark of programming
project grading. Students don’t see anything about the re-
sults of running secret test against their submission until
after the deadline.

2.1 Release Tests
Release tests are one of the more unique and innovative

features of the Marmoset. If a student submission passes
all of the public tests, then the student has the option of
release testing that submission.

If a student requests release testing of a submission, the
system reveals to the student only the number of release
tests the submission failed and the names of the first two
failed release tests (if any). For example, for a Poker game
project, students might be told that their submission failed
4 release tests, and that the names of the first two failed test
cases are testFullHouse and testFourOfAKind.

Students are limited in how many release tests they can
perform. Each release test consumes a release token, which
eventually regenerates. The parameters can be configured
on a per-project basis, but in the standard configuration stu-
dents have 3 tokens, each of which regenerates 24 hours after
being used. This configuration allows a student to perform
3 release tests of her project during a 24 hour period.

2.2 Instructional monitoring
The instructional staff can monitor student progress on a

programming assignment at any time. For example, instruc-
tors can access views such as a table detailing how many
students have passed each of the test cases, a list of the best
submission for each student, a list of students who have not
yet submitted anything, and so on. Instructors can also drill
down into a particular student’s submission, revealing the
details of a particular test case. This feature helps instruc-
tors tailor lectures and office hours towards concepts that
students are having trouble with.

2.3 Build and Test Features
Marmoset handles both Java and makefile-based projects.

The makefile-based projects can handle any programming
language that can be compiled and tested using the make [8]
utility. We have used Marmoset with projects in C, Ruby,
and Objective Caml.

For Java projects, Marmoset implements a number of
Java-specific features. Java test cases are specified using
JUnit [5] and are run under a security manager. The secu-
rity manager allows relatively fine-grained control of what
student code is and is not allow to do at runtime; we use it to
prevent student code from doing things like launching new
processes, opening network connections which might com-
promise test implementations or data files, etc. We also run
FindBugs (a static analysis tool that looks for Java coding
defects) on each submission and report the warnings we be-

lieve appropriate back to students. Finally, we use Clover,
a code coverage tool provided under an academic license,
to collect code coverage data from the test runs on Java
projects.

Non-java projects are run as an unprivileged user, which
substantially limits the damage that could be done, acci-
dently or malicously, by student code.

2.4 Automatic CVS synchronization
An optional component of the Marmoset Eclipse plu-

gin is automatic CVS synchronization. If enabled, this fea-
ture performs an automatic CVS update every time Eclipse
is started and an automatic CVS commit on every save.
The Eclipse plugin is intended for use only on single stu-
dent projects, where the same student can commit without
fear of their changes conflicting with anyone else’s. The in-
tent is to transparently keep a student’s files synchronized
with a CVS repository stored on a central server, regardless
of whether the student is working on their project in their
dorm room, on their laptop, or at a university computer lab.

2.5 Research Data Collection
In most of the courses using Marmoset we also ask stu-

dents to participate in a research study. Participation allows
us to study anonymized versions of data from their pro-
gramming programs for research purposes. We ask partici-
pating students to fill out an optional demographic survey,
but other than the optional survey, students in the research
study do not experience the course any differently than stu-
dents who do not participate in the study.

When Automatic CVS synchronization is used in a course
from which we are collecting research data, we get snapshots
of student code at the granularity of every save of every file.
We collect one additional bit of data for research purposes,
which is to record which snapshots were actually run or de-
bugged. This allows us to distinguish frequent saves being
performed to ensure no work is lost from frequent saves be-
ing performed as part of a edit-compile-run cycle.

3. INSTRUCTOR EXPERIENCE
As instructors, we had a number of expectations and goals

for the Marmoset system:

• By making release tests a limited resource, we hope to
encourage students to both start projects early (and
therefore have more opportunities for release testing),
and think about their code carefully and test their code
thoroughly before expending a precious release token.

• By encouraging students to submit projects early, our
system can provide instructors with feedback about
whether test cases are testing the desired material early
enough for the project to be adjusted as necessary.

• Even projects that do not use release testing should
benefit from Marmoset because the detailed feedback
provided well in advance of the project deadline allows
instructors to adjust the test cases early enough to give
students their grades hours—not days or weeks—after
the deadline.

• We hope Marmoset will provide a framework around
which we can design research studies that focus on
what steps students take—and the mistakes they make—
as they develop their programming assignments.

Question 1 2 3 4 5 NA
Q1 0 5 12 32 21 0
Q2 5 3 9 14 39 0
Q3 4 13 6 31 16 0
Q4 3 10 8 34 15 0
Q5 6 20 20 19 5 0
Q6 10 7 10 17 25 1

Table 1: Student Survey Results

In this section, we present narratives of our experiences us-
ing Marmoset in several courses, and discuss how well it
met our expectations.

3.1 William Pugh,
Object Oriented Programming II

As one of the lead PIs on the Marmoset project, I’ve
been an enthusiastic backer of the release testing approach.
However, there were a number of things I didn’t anticipate.

One point is that using Marmoset really front-loads the
programming assignment development process. You really
have to get the project entirely done, including the test
cases, well in advance of handing it out to students. This is
something we should do even with standard project grading
techniques, but Marmoset really forces you to do it.

Initially we had a näıve assumption that once you finished
designing the project and made it available to students, you
wouldn’t have to make any more changes to the test cases.
What we found is that despite our best efforts, we often have
to update the test cases after the project is made available
to students, and we had to add an entire work flow system
to Marmoset for loading and validating new test setups
before they are made available to students.

I think that Marmoset has encouraged some students to
start work earlier than they might have otherwise. However,
some students are very stubborn and it is very difficult to get
them to develop good work habits. The Marmoset system
allows us to see, for example, which students haven’t made
submissions for a project 48 or 24 hours before the project
deadline. I’ve tried to talk to some of those students about
their study habits, but I also worry about creating a big
brother atmosphere.

Before the use of Marmoset, when programming assign-
ments were not tested against the instructors test data until
after the programming assignment, the project descriptions
were very detailed and tried to contain every detail needed
to implement the projects correctly. With release testing,
things do not need to be specified at this level of detail,
since students get a chance to test their interpretations of
the project description against the release tests. There has
been some discussion among the instructors as to whether
having less detailed specifications is a good idea. On one
hand, extremely detailed specifications are good and useful.
On the other hand, having specifications that are potentially
ambiguous in places and getting feedback from users (e.g,
release tests) is more representative of the real world.

3.2 Jeffrey Hollingsworth,
Introduction to Low-Level Programming
Concepts

Marmoset allows TAs to spend their time helping stu-
dents and evaluating code for style rather than doing testing
of programs. The key to effectively using it is to have all

of the tests cases done and ready at least a week before the
project is handed out. This gives the TAs a chance to try
the projects and debug any confusion about the rules for
what will be tested. The main challenge in developing as-
signments to work well with Marmoset is ensuring that the
test harness for each test case will handle any valid imple-
mentation of the project specification, not just the reference
copy created by the instructor. Having the TAs test the
assignment before the students helped greatly with this.

The overall implementation is very flexible and allowed us
to use projects where the “tests” were quite different. For
example, borrowing an idea from Edwards [1], one program-
ming assignment involved the students writing test cases for
an API we provided. Using several implementations of the
API each seeded with a different bug, we were able to use
Marmoset to evaluate the effectiveness of the students’ test
cases.

3.3 Nelson Padua-Perez,
Object-Oriented Programming I and II

My experience with Marmoset has been a positive one.
Although it requires some up front effort to set the environ-
ment, the benefits outweighs the initial effort. Among the
main advantages of the system we can mention:

• Marmoset promotes better projects. Marmoset forces
you to think about the grading process, as you consider
a project idea. Thinking how to grade a project as you
design a project, promotes a clear definition of project
objectives, and how those objectives will be verified
during the testing phase.

• Marmoset improves the student’s learning experience.
By monitoring students’ tests a teacher can identify
concepts students seem to have problems understand-
ing. These concepts can be revisited in lecture even
before a project is due.

• Marmoset improves the quality of the grading pro-
cess. By generating automatic tests results, teachers
can now devote more time to code style and documen-
tation.

3.4 Fawzi Emad,
Object-Oriented Programming I and II

Before using Marmoset, I always had to make difficult
choices about whether or not to make project test cases
publicly available to the students. While public tests pro-
vide students with valuable feedback, students sometimes
rely too heavily upon them, resulting in “trial-and-error”
programming. The alternative, “secret” tests that are com-
pletely hidden from the students, requires students to think
hard about different input cases, encouraging them to plan
more carefully and work harder to anticipate various pos-
sibilities. The obvious downside to “secret” testing is that
students receive no feedback at all about how their project
is performing until after it is too late for them to make
changes.

In contrast, “release tests” give students enough feedback
to keep them motivated, but not so much feedback that they
resort to a trial-and-error approach. I have personally found
the release testing concept to be extraordinarily valuable, as
my students are starting projects earlier, are working harder
to produce a finished product, and are still learning to think
for themselves about complex input cases.

The ability to obtain a quick visual summary of the rates
of success that students are having with various test cases at
any given moment has also been very useful. In any situation
where most of my students are failing a particular test case,
I know that either something is wrong with my test, or that
I need to go back to the classroom to re-visit a concept.

4. STUDENT EXPERIENCE
Directly assessing the pedagogical impact of Marmoset

has been a challenge. One possibility would be a controlled
experiment: however, it would be very difficult ethically to
allow some students in a course to use the system while
denying it to others. Another possibility would be to com-
pare different semesters of the same course before and after
the introduction of Marmoset. We were not able to per-
form such a comparison because the initial deployment of
Marmoset at the University of Maryland coincided with
a major restructuring of the introductory curriculum that
changed the language used in the first two semesters from
C/C++ to Java, and introduced an entirely new sequence
of projects.1

Although a direct assessment of Marmoset’s impact on
student achievement has not possible so far, we did want
to gain some understanding of how students perceived the
system, and whether or not they felt it enhanced their ex-
perience or detracted from it. To this end, we conducted a
survey that asked the following questions:

Q1 Is your overall impression positive? (1=negative, 5=pos-
itive)

Q2 Do you prefer release testing over traditional post-
deadline testing? (1=post-deadline, 5=release)

Q3 Were you able to make good use of feedback from re-
lease tests? (1=no, 5=yes)

Q4 Did release testing encourage you to start projects ear-
lier that you might have otherwise? (1=no, 5=yes)

Q5 Did release testing make you feel more relaxed and con-
fident (or, conversely, more tense and unsure)? (1=tense
and unsure, 5=relaxed and confident)

Q6 For projects with secret test cases, did you keep work-
ing after you had passed all of the release tests? (1=no,
5=yes)

The students who took the survey had used Marmoset
in Object-Oriented Programming I, and were currently en-
rolled in Object-Oriented Programming II. We solicited re-
sponses on a scale from 1 to 5, where 1 is the least positive
outcome, 3 is neutral, and 5 is the most positive outcome.

The survey results are shown in Table 1. In general, stu-
dents had a positive impression of the system. According
to the student responses, the feedback from the release tests
was useful, and were a motivation to start work early. Sur-
prisingly, even given the positive reaction to the system
overall, the students were split evenly on the question of
whether or not release tests increased their confidence. We
speculate that some students found themselves in situations
where their projects failed one or more release tests, but

1In the future, we may be able to make such a comparison
by using Marmoset in a different course without making
other simultaneous curriculum changes.

they either did not understand the reason for the failure, or
they did not understand how to fix the problem.

5. RESEARCH EXPERIENCE
As mentioned earlier, in most courses in which Mar-

moset is used, we invite students to participate in a research
study where anonymized versions of their project snapshots
are recorded in a database. The volume of data we have
collected to date is remarkable. For example, in a single
semester of Object-Oriented II, we collected over 30,000
unique, compilable snapshots of student code. In these snap-
shots, we recorded approximately 400,000 unit test results,
approximately 50,000 of which were failures due to an eas-
ily recognizable runtime exception, such as null pointer ex-
ceptions and class cast exceptions. We used the runtime
exception data to measure the accuracy of the FindBugs
static analysis tool at detecting the underlying bugs for sev-
eral types of runtime exceptions. By identifying cases that
were not identified by FindBugs, we were able to improve
the accuracy of the static analysis to find more bugs with
fewer false positives. For example, after improvements to
the detector for bad type casts, FindBugs was able to find
between 8% and 30% of all class cast exceptions in student
submissions for two programming projects.

Even after this initial success, we still feel that we have
only scratched the surface of the data collected, and that
trying to extract all the interesting information from the
data is like trying to drink from a fire-hose.

6. RELATED WORK
Many systems exist to automatically collect and test stu-

dent submissions: some examples are [9, 3, 4, 1, 7, 10]. Our
contribution is to control students’ access to information
about test results in a way that provides incentives to adopt
good programming habits.

In [6], Liu et. al. study CVS histories of students working
on a team project to better understand both the behavior
of individual students and team interactions. They found
that both good and bad coding practices had characteristic
ways of manifesting in the CVS history. Our goals for the
data we collect with our automatic code snapshot system
are similar, although we consider individual students rather
than teams. Our system has the advantage of capturing
changes at a finer granularity: file modification, rather than
explicit commit.

In [1], Edwards presents a strong case for making unit
testing a fundamental part of the Computer Science cur-
riculum. In particular, he advocates requiring students to
develop their own test cases for projects, using project so-
lutions written by instructors (possibly containing known
defects) to test the student tests.

Ellsworth et al describe Quiver [2], an automated QUIz
VERification tool that provides a closed-lab environment
where students complete a small programming assignment in
a limited amount of time. Because Quiver was designed for
an interactive, timed environment, it requires that students
use a specific client machine and editor, does not provide
limited feedback as in release tests, and does not capture
fine-grained snapshots of student code.

Praktomat [12] is an automated testing and code review
system for introductory students that allows students to sub-
mit versions of their code, view and provide feedback on

other students’ code, receive feedback on their own code, and
then re-submit their code. The data collected by Praktomat
suggests that students benefited greatly from providing and
receiving feedback on their code; however, the added over-
head of detecting or preventing plagiarism in such a system
is a major drawback.

The Environment for Learning to Program (ELP) [11] is a
static analysis framework for grading student projects and
providing feedback about code quality. ELP is a comple-
mentary static approach to our dynamic testing system.

7. REFERENCES
[1] S. H. Edwards. Rethinking computer science education from a

test-first perspective. In Companion of the 2003 ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Anaheim, CA, October 2003.

[2] C. C. Ellsworth, J. James B. Fenwick, and B. L. Kurtz. The
quiver system. SIGCSE Bull., 36(1):205–209, 2004.

[3] D. Jackson and M. Usher. Grading student programs using
ASSYST. In Proceedings of the 1997 SIGCSE Technical
Symposium on Computer Science Education, pages 335–339.
ACM Press, 1997.

[4] E. L. Jones. Grading student programs - a software testing
approach. In Proceedings of the fourteenth annual consortium
on Small Colleges Southeastern conference, pages 185–192.
The Consortium for Computing in Small Colleges, 2000.

[5] JUnit, testing resources for extreme programming.
http://junit.org, 2004.

[6] Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS
historical information to understand how students develop
software. In Proceedings of the International Workshop on
Mining Software Repositories, Edinburgh, Scotland, May 2004.

[7] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in
automatic assessment on mass courses and issues for designing
virtual courses. In ITiCSE ’02: Proceedings of the 7th annual
conference on Innovation and technology in computer science
education, pages 55–59, New York, NY, USA, 2002. ACM
Press.

[8] A. Oram. Managing Projects with Make. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1992.

[9] K. A. Reek. A software infrastructure to support introductory
computer science courses. In SIGCSE ’96: Proceedings of the
twenty-seventh SIGCSE technical symposium on Computer
science education, pages 125–129, New York, NY, USA, 1996.
ACM Press.

[10] R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic
assessment of programming exercises. In ITiCSE ’01:
Proceedings of the 6th annual conference on Innovation and
technology in computer science education, pages 133–136, New
York, NY, USA, 2001. ACM Press.

[11] N. Truong, P. Roe, and P. Bancroft. Static analysis of students’
java programs. In Proceedings of the sixth conference on
Australian computing education, pages 317–325. Australian
Computer Society, Inc., 2004.

[12] A. Zeller. Making students read and review code. In
Proceedings of the 5th annual SIGCSE/SIGCUE
ITiCSEconference on Innovation and technology in computer
science education, pages 89–92. ACM Press, 2000.

