Hardware-Accelerated RNA Secondary-Structure Alignment

James Moscola and Ron K. Cytron
Department of Computer Science and Engineering
Washington University, St. Louis, MO
and
Young H. Cho
Information Sciences Institute
University of Southern California

The search for homologous RNA molecules—sequences of RNA that might behave similarly due to similarity in their physical (secondary) structure—is currently a computationally intensive task. Moreover, RNA sequences are populating genome databases at a pace unmatched by gains in standard processor performance. While software tools such as Infernal can efficiently find homologies among RNA families and genome databases of modest size, the continuous advent of new RNA families and the explosive growth in volume of RNA sequences necessitate a faster approach.

This work introduces two different architectures for accelerating the task of finding homologous RNA molecules in a genome database. The first architecture takes advantage of the tree-like configuration of the covariance models used to represent the consensus secondary structure of an RNA family and converts it directly into a highly-pipelined processing engine. Results for this architecture show a 24x speedup over Infernal when processing a small RNA model. It is estimated that the architecture could potentially offer several thousands of times speedup over Infernal on larger models, provided that there were sufficient hardware resources available.

The second architecture is introduced to address the steep resource requirements of the first architecture. It utilizes a uniform array of processing elements and schedules all of the computations required to scan for an RNA homolog onto those processing elements. The estimated speedup for this architecture over the Infernal software package ranged from just under 20x to over 2,350x.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles; J.3 [Life and Medical Sciences]: Biology and genetics

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Bioinformatics, RNA, Secondary-Structure Alignment

1. INTRODUCTION

In the field of bioinformatics, sequence alignment plays a major role in classifying and determining relationships among related DNA, RNA, and protein sequences.
Sequence alignment is very well studied in the areas of DNA and protein analysis, and many tools have been developed to aid research in these areas [Altschul et al. 1990; Pearson and Lipman 1988; HMMER]. However, only recently has the importance of non-coding RNAs (ncRNAs) been discovered [Storz 2002].

An ncRNA is an RNA molecule that is not translated into a protein, but instead performs some other cellular process. Examples of ncRNA molecules include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). These molecules are typically single-stranded nucleic acid chains that fold upon themselves to create intramolecular base-paired hydrogen bonds [Durbin et al. 1998]. The result of these bonds is a complex three-dimensional configuration (shape) that partially defines the function of an RNA molecule. This configuration is known as the secondary structure of the RNA molecule. Two molecules are said to be homologous if they have similar to identical secondary structures.

Homologous RNA molecules are likely to have similar biological functions, even though they may have dissimilar primary sequences. For example, the primary sequence AAGACUUCGGAUC creates the secondary structure shown in the left portion of Figure 1(b). A homologous molecule with a highly dissimilar primary sequence could result from exchanging the sequence’s G and C nucleotides, or by substituting U for C and A for G.

The DNA sequences from which ncRNA molecules are transcribed are known as RNA genes. However, unlike protein-coding genes, RNA genes cannot be easily detected in a genome using statistical signals [Rivas and Eddy 2001]. Moreover, because related RNA genes tend to exhibit poor primary sequence conservation, techniques developed for comparing DNA sequences are ill-suited for detecting homologous RNA sequences [Durbin et al. 1998]. Instead, techniques have been developed that utilize the consensus secondary structure of a known RNA family to detect new members of that family in a genome database [Eddy and Durbin 1994]. To date, these techniques have proven to be very computationally complex and can be quite demanding even for the fastest computers [Eddy 2006].

The consensus secondary structure of an RNA family can be represented as a stochastic context-free grammar (SCFG) that yields high-probability parses for, and only for, the primary sequences of molecules belonging to the family [Searls 1992]. Several tools have been developed that employ SCFGs as a means of detecting homologous RNA molecules in a genome database. At the forefront of these tools is the INFERNAL software package [Infernal] and the Rfam database [Griffiths-Jones et al. 2005] which currently includes SCFGs for over 600 RNA families.

INFERNAL has shown great success in its ability to detect homologous RNA sequences in genome databases. Additionally, since it was first released in 2002, INFERNAL has been frequently updated and extended to incorporate various heuristics to decrease the computational costs of finding homologous RNA sequences [Weinberg and Ruzzo 2006; Nawrocki and Eddy 2007]. However, even with these improvements, the time to scan a large genome database can still take many hours, days, or even years, which greatly limits the usefulness of tools such as INFERNAL.

This work examines architectures for finding RNA homologs using custom hardware. First, Section 2 presents related work. Next, Section 3 provides a brief background on the techniques used to model RNA secondary structures and the

algorithms used for finding homologous sequences in a genome database. Section 4 presents a highly-pipelined initial architecture that is capable of scanning genome databases at very high speeds. Although extremely fast, the resource requirements for the baseline architecture prohibits the architecture from practical use for even average size RNA models. In Section 5, a more practical architecture for scanning genome databases is presented that involves scheduling computations onto a set of parallel processing elements. One possible scheduling technique for use with this architecture is presented in Section 6. Finally, an analysis of the architecture is presented in Section 7.

2. RELATED WORK

While heuristics [Brown 2000; Lenhof et al. 1998; Lowe and Eddy 1997; Weinberg and Ruzzo 2004; 2006; Nawrocki and Eddy 2007] can dramatically accelerate the computationally complex process of detecting homologous RNA sequences in genome databases, the completeness and quality of the results are often sacrificed. For example, some heuristics pre-filter sequences based on their primary sequence similarity, applying the more complex secondary structure alignment algorithms only on the sequences that pass the filter [Weinberg and Ruzzo 2004; 2006]. However, because these filters are based on the consensus primary sequence of an RNA family, they do not work well on families that have limited primary sequence conservation [Nawrocki and Eddy 2007]. Furthermore, as an RNA family grows, and more variation is introduced into the consensus primary sequence, these filtering techniques may become ineffective.

3. BACKGROUND

Transformational grammars were first described as a means for modeling sequences of nucleic acids by Searls [Searls 1992]. Grammars provide an efficient means of modeling the long range base-pair interactions of RNA secondary structures. More specifically, stochastic context-free grammars (SCFGs) provide the framework required to represent probabilistic models of both the primary sequence and the base-paired secondary structure of an RNA molecule. Given a multiple sequence alignment of an RNA family, one can construct a profile-SCFG, also referred to as a covariance model (CM), that can subsequently be used to detect homologs in a genome database [Eddy and Durbin 1994]. The remainder of this section provides background on CMs and how they are used for scanning genome databases.

3.1 Covariance Models

A covariance model (CM) is a specialized SCFG developed specifically for modeling both the primary sequence and secondary structure of RNA families. Figure 1 shows the development of a CM as follows. In Figure 1(a), three RNA sequences are aligned, with connected boxes showing the consensus base pairs that bind to
such edits are accommodated by state transitions within a node. For three nodes possible transitions.

The consensus secondary structure of all three sequences is represented by the directed binary tree in Figure 1(c), whose nodes indicate the binding pattern of the sequences’ nucleotides.

While the three sequences of Figure 1(a) fit identically onto the binary tree, other sequences may fit the model only if appropriate insertions and deletions are applied. Such edits are accommodated by state transitions within a node. For three nodes of the binary tree in Figure 1(c), Figure 1(d) shows those nodes’ internal states and possible transitions.

Table I: Each of the nine different state types and their corresponding SCFG production rules

<table>
<thead>
<tr>
<th>State Type</th>
<th>Description</th>
<th>Production</th>
<th>Emission</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>Pair Emitting</td>
<td>$P \rightarrow x_i Y x_j$</td>
<td>$e_v(x_i, x_j)$</td>
<td>$t_v(Y)$</td>
</tr>
<tr>
<td>ML / IL</td>
<td>Left Emitting</td>
<td>$L \rightarrow x_i Y$</td>
<td>$e_v(x_i)$</td>
<td>$t_v(Y)$</td>
</tr>
<tr>
<td>MR / IR</td>
<td>Right Emitting</td>
<td>$R \rightarrow Y x_j$</td>
<td>$e_v(x_j)$</td>
<td>$t_v(Y)$</td>
</tr>
<tr>
<td>B</td>
<td>Bifurcation</td>
<td>$B \rightarrow SS$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Delete</td>
<td>$D \rightarrow Y$</td>
<td>1</td>
<td>$t_v(Y)$</td>
</tr>
<tr>
<td>S</td>
<td>Start</td>
<td>$S \rightarrow Y$</td>
<td>1</td>
<td>$t_v(Y)$</td>
</tr>
<tr>
<td>E</td>
<td>End</td>
<td>$E \rightarrow \epsilon$</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For the purposes of assessing the fitness of an RNA string for membership in an RNA family, the RNA string is parsed using grammar rules that model state transitions such as those in Figure 1(d). Each state can be represented as a SCFG production rule that has the form of one of the nine non-terminal (or state) types shown in Table I. Each state has its own set of emission probabilities for each of the single or base-paired residues that can be emitted from that state. Additionally, each state has its own set of transition probabilities for the set of states to which it can transition.
A state that is denoted as an MP state generates (or emits) the base-pair (x_i, x_j) with some emission probability $e_v(x_i, x_j)$ and transitions to some state Y with some transition probability $t_v(Y)$. Likewise, a state that is an ML (or IL) state generates (or emits) the single residue x_i with some emission probability $e_v(x_i)$ and transitions to some state Y with some transition probability $t_v(Y)$. The B type bifurcation states represent a fork in the tree structure of the CM and always transition to two distinct S type states without emitting any residues. S states are also members of the $ROOT$ node of the CM. A D type state is used to represent a residue that is part of the CM, but missing from the target genome sequence. Leaf nodes of the CM are represented as E states and do not emit any residues. For a more detailed discussion on CMs, refer to [Durbin et al. 1998; Eddy and Durbin 1994].

3.2 Rfam Database

An online database, known as the Rfam database [Griffiths-Jones et al. 2005], currently contains multiple sequence alignments and CMs for over 600 RNA families. Rfam is an open database that is available for all researchers interested in studying algorithms and architectures related to RNA homology search. Since its inception, the Rfam database has seen continuous growth as more ncRNA families are identified. Figure 2 depicts the growth of the Rfam database over the last five years. Estimates suggest that there are several tens of thousands of ncRNAs in the human genome [Mattick 2003; Washietl et al. 2003]. The vast number of ncRNAs suggests the need for a high-performance alternative to software approaches for homology search.

![Figure 2: The number of covariance models in the Rfam database has continued to increase since its initial release in July of 2002.](image-url)
3.3 Database Search Algorithm

CMs provide a means to represent the consensus secondary structure of an RNA family. This section describes how to utilize a CM to find homologous RNA sequences in a genome database.

Aligning an RNA sequence to a CM can be implemented as a three-dimensional CYK (Cocke-Younger-Kasami) [Cocke 1969; Younger 1967; Kasami 1965] dynamic programming (DP) parsing algorithm. Each state in the CM is represented as a two-dimensional matrix with rows 0 through L where L is the length of the genome database, and columns 0 through W where W is the length of the window (i.e. the longest subsequence of the genome database) which should be aligned to the CM. Figure 3 shows an example of the alignment window as it scans across a genome database.

The DP algorithm initializes the three-dimensional matrix for all parse trees rooted at E states of the CM and for all subsequences of zero length. The algorithm then computes the scores for the DP matrix starting from the END nodes of the CM and working towards the $ROOT_0$ node. Figure 4 shows the DP recurrences for aligning a genome database sequence $x_1...x_L$ to a CM where: \[\gamma_v(j, d) \text{ is the log-odds score for the most likely parse tree rooted at state } v \text{ that generates the subsequence that ends at location } j \text{ of the genome sequence and has length } d \text{ (i.e. the subsequence } x_{j-d+1}...x_j) \]

The DP algorithm initializes the three-dimensional matrix for all parse trees rooted at E states of the CM and for all subsequences of zero length. Figure 3 shows an example of the alignment window as it scans across a genome database. Each window is aligned to the CM via the DP parsing algorithm.

Figure 4 shows the equations used in version 0.81 of the INFERNAL software package. However, it should be noted that as of INFERNAL version 0.4 the emission probabilities for all insert states are set to 0 in lieu of the values stored in the CM.

that a state may have to six. The minimum number of incoming edges is one. As can be
seen in Figure 1(d), the structure of CMs limits the maximum number of children
of matrix cells that are a part of bifurcation states, each cell (v, j, d) in the DP
matrix can be represented as a single node in a task graph. Nodes are connected
using the parent/child relationships that are described in CM, as well as the DP
algorithm shown in Figure 4. The CM specifies the parent/child relationships be-
tween the states \(M_0 \) to \(N \) in the start state of the \(\text{ROOT}_0 \) node as \(\gamma_0(j, j - i + 1) \) (i.e. \(\gamma_0(j, d) \)). For example, the final score for the subsequence \(x_{15} \) would be located in \(\gamma_0(15, 6) \). Generally, sub-sequences with final scores that are greater than zero represent good alignments
to the CM. The DP algorithm has a \(O(M_s L + M_s LW^2) \) memory complexity and a
\(O(M_s W + M_s W^2) \) memory complexity where \(M_s \) is the number of non-bifurcation
states and \(M_b \) is the number of bifurcation states [Durbin et al. 1998].

3.4 Expressing Covariance Models as Task Graphs

To aid in the development of architectures for accelerating the computations de-
scribed in Section 3.3, it is helpful to think of the three-dimensional DP matrix
required by the computation as a directed acyclic task graph. With the exception
of matrix cells that are a part of bifurcation states, each cell \((v, j, d)\) in the DP
matrix can be represented as a single node in a task graph. Nodes are connected
using the parent/child relationships that are described in CM, as well as the DP
algorithm shown in Figure 4. The CM specifies the parent/child relationships be-
tween the states \(v \). The DP algorithm specifies the parent/child relationships for
cells \((j, d)\) within those states. To connect nodes in the task graph, edges are cre-
ated from a child node to a parent node (i.e. from nodes in higher numbered states
to nodes in lower numbered states). This corresponds to the direction of the com-
putation which starts at state \(v = M - 1 \) and ends at state \(v = 0 \). For nodes from
non-bifurcation states, the maximum number of incoming edges is six. As can be
seen in Figure 1(d), the structure of CMs limits the maximum number of children
that a state may have to six. The minimum number of incoming edges is one.

Hardware-Accelerated RNA Secondary-Structure Alignment · 7

- \(e_v(x_j) \) is the log-odds probability that state \(v \) generates (or emits) the residue
 \(x_j \)
- \(e_v(x_i, x_j) \) is the log-odds probability that state \(v \) generates (or emits) the
 residues \(x_i \) and \(x_j \)

Initialization: for \(j = 0 \) to \(M - 1 \) to \(0 \):

\[
\gamma_v(j, 0) = \begin{cases}
0 & \text{if } s_v = E \\
\max_{y \in \mathcal{C}_v} [\gamma_y(j, 0) + t_v(y)] & \text{if } s_v \in \{D, S\} \\
\gamma_y(j, 0) + \gamma_z(j, 0) & \text{if } s_v = B, C_v = (y, z) \\
-\infty & \text{otherwise}
\end{cases}
\]

Recursion: for \(j = 1 \) to \(M - 1 \) to \(0 \):

\[
\gamma_v(j, d) = \begin{cases}
-\infty & \text{if } s_v = E \\
-\infty & \text{if } s_v = MP \text{ and } d < 2 \\
\max_{0 \leq k \leq d} \{\gamma_y(j - k, d - k) + \gamma_z(j, k)\} & \text{if } s_v \in \{B, C_v = (y, z)\} \\
\max_{y \in \mathcal{C}_v} [\gamma_y(j, d - 1) + t_v(y)] + e_v(x_j) & \text{if } s_v \in \{S, D\} \\
\max_{y \in \mathcal{C}_v} [\gamma_y(j - 1, d - 1) + t_v(y)] + e_v(x_j) & \text{if } s_v \in \{MP, IR\} \\
\max_{y \in \mathcal{C}_v} [\gamma_y(j - 1, d - 2) + t_v(y)] + e_v(x_i, x_j) & \text{if } s_v = MP \text{ and } d \geq 2
\end{cases}
\]

Fig. 4: The initialization and recursion equations for the dynamic programming algorithm

The DP algorithm scores all subsequence of length 0 through \(W \) rooted at each of
the CM states \(M - 1 \) down to 0. The final score for a subsequence \(x_{i...x_j} \) is computed
in the start state of the \(\text{ROOT}_0 \) node as \(\gamma_0(j, j - i + 1) \) (i.e. \(\gamma_0(j, d) \)). For example,
the final score for the subsequence \(x_{15} \) would be located in \(\gamma_0(15, 6) \). Generally,
subsequences with final scores that are greater than zero represent good alignments
to the CM. The DP algorithm has a \(O(M_s L + M_s LW^2) \) time complexity and a
\(O(M_s W + M_s W^2) \) memory complexity where \(M_s \) is the number of non-bifurcation
states and \(M_b \) is the number of bifurcation states [Durbin et al. 1998].
3.4.1 Bifurcation States. As mentioned in the previous section, matrix cells from bifurcation states are not represented as a single node in a task graph representation of the DP computation. As the equations in Figure 4 show, cells for bifurcation states are treated differently than cells for non-bifurcation states. Unlike non-bifurcation states, the number of children (i.e., incoming edges) that a cell from a bifurcation state may have is not limited to six. Instead, the number of children that a bifurcation cell may have is limited only by the window size \(W \) of the CM. More specifically, the number of individual additions required by a cell in a bifurcation state is \(W + 1 \). The number of comparisons required to find the maximum of those additions is \(\log_2(W + 1) \). For the CMs in the Rfam 8.0 database, \(W \) can range from as low as 40 to as high as 1200.

To make the computations required for cells in bifurcation states more like the computations for cells in non-bifurcation states, each bifurcation computation is broken up into a series of smaller computations. It is these smaller computations that are mapped into nodes in the task graph that represents the CM. As mentioned above, the computation for each bifurcation node can be broken down into a set of additions and comparisons. Because non-bifurcation nodes in the task graph can represent as few as one addition and as many as six, it is given that an architecture will need to have resources capable of handling computations in sets of one to six. It is those resources onto which the computations for bifurcation nodes must be mapped. Given the above, the number of addition nodes required in the task graph for a single cell in a bifurcation state can be expressed as:

\[
\left\lceil \frac{k + 1}{x} \right\rceil \text{ where } x \text{ is the number of additions per node and } 0 \leq k \leq d
\]

The number of addition nodes required in the task graph for all cells in a single window \(W \) of a bifurcation state can be expressed as:

\[
\sum_{j=0}^{W} \sum_{k=0}^{j} \left\lceil \frac{k + 1}{x} \right\rceil \text{ where } x \text{ is the number of additions per node and } 0 \leq k \leq d
\]

The number of comparison nodes required in the task graph for a single cell in a bifurcation state is:

\[
\log_2 \left\lceil \frac{k + 1}{x} \right\rceil \sum_{i=1}^{\left\lceil \frac{k + 1}{x} \right\rceil} \text{ where } x \text{ is the number of comparisons per node and } 0 \leq k \leq d
\]

The number of comparison nodes required in the task graph for all cells in a single window \(W \) of a bifurcation state is:

\[
\sum_{j=0}^{W} \sum_{k=0}^{j} \sum_{i=1}^{\left\lceil \frac{k + 1}{x} \right\rceil} \log_2 \left\lceil \frac{k + 1}{x} \right\rceil \text{ where } x \text{ is the number of comparisons per node and } 0 \leq k \leq d
\]

The total number of nodes required in the task graph for all cells in a single window

W of a bifurcation state is:

\[
W = \sum_{j=0}^{k} \sum_{k=0}^{j} \left(\left\lceil \frac{k+1}{x} \right\rceil + \log_{x} \left\lceil \frac{k+1}{x} \right\rceil \right)
\]

3.5 Covariance Model Numeric Representation in Hardware

Before developing an architecture to accelerate the algorithm in Section 3.3 it is important to understand the range of values that can be generated by the algorithm. CMs included in the Rfam 8.0 database represent transition and emission probabilities as log-odds probabilities accurate to three decimal places [Griffiths-Jones et al. 2005]. The Infernal software package [Infernal] represents these values as floating-point values and performs floating-point addition to compute the final log-odds score of the most likely parse of an input sequence. Because floating-point units are expensive in terms of hardware resource utilization, it is desirable to avoid floating-point computation in hardware. Fortunately, the DP recurrence, described in Section 3.3, requires only floating-point addition, and no floating-point multiplication. This means that all log-odds probabilities can be converted into signed integer values by multiplying them by 1000, which can subsequently be summed quickly and efficiently using integer adders in hardware. Multiplying the CM probabilities by 1000 allows all data in the model to be utilized so there is no data loss during the DP computation in hardware.

To utilize hardware logic and memory resources most efficiently, it is desirable to represent the signed integer scores computed by the DP algorithm with as few bits as possible. Using too many bits would result in inefficient use of precious fast memory-structures (such as block RAM) and could potentially limit the size of the CMs that can be processed using the architecture. Additionally, too many bits would result in adders with excessively high latencies and degrade the overall performance of the architecture. Using too few bits could cause the adders to become saturated on high scoring sequences, resulting in computational errors, and ultimately incorrect scores being reported for those sequences.

To determine the minimum number of bits required to avoid saturation, one must know the maximum values expected in the DP computation. In this work, the maximum scores expected for all of the CMs in the Rfam 8.0 database were computed as follows. Because there is often a penalty associated with insertions and deletions with respect to the consensus structure, the maximum likelihood path through any CM \(M \) is the consensus path \(\pi \). To compute the maximum score expected \(\gamma_{\text{max}}(\pi|M) \), let \(v \) be a state in \(M \), let \(C_v \) be the set of states that are children of the state \(v \), let \(t_v(y) \) be the transition probability from state \(v \) to state \(y \) where \(y \in C_v \), and let \(e_v \) be the set of emission scores associated with state \(v \). Then for any \(M \) with consensus path \(\pi \):

\[
\gamma_{\text{max}}(\pi|M) = \sum_{v=0}^{M-1} t_v(y) + \max_{y \in C_v} e_v \quad \text{where } y \in C_v, \ y \in \pi
\]
That is, the sum of the transition probabilities along the consensus path plus the maximum emission scores for each state along that path produces the maximum score that can be computed for that model.

In computing the maximum scores for each of the CMs in the Rfam 8.0 database, it was found that the maximum score over all models is 726.792, which was computed for the model with the Rfam ID RF00228. When converted to a signed integer as described earlier, the maximum value is 726,792 which can be represented using $\left\lceil \log_2(726,792) \right\rceil + 1$ sign bit = 21 bits. Using 21-bits ensures that there will be no loss of precision in a hardware architecture for models that have maximum scores of up to $\tfrac{2^{21} - 1}{1000} = 1048.576$. Therefore, all models in the Rfam 8.0 database can be processed accurately without saturating adders in a hardware architecture. If new CMs are developed in the future that have maximum scores that are greater than 1048.576, additional bits will be required to represent those scores.

A graph illustrating the distribution of maximum scores of all the CMs in the Rfam 8.0 database is shown in Figure 5. The maximum scores range from 28.683 (Rfam ID RF00390) to 726.792 (Rfam ID RF00228). The graph also shows the number of bits required to compute scores for the CMs without saturation. For example, using 18 bits to represent probabilities supports only 58% of the CMs in the Rfam 8.0 database. The remaining 42% of the CMs have maximum scores that are greater than 131.072 (i.e. $\tfrac{2^{18} - 1}{1000}$) and will saturate 18-bit adders. Using 19 and 20 bits, the architecture would be capable of supporting 91% and 98% of the CMs respectively. As shown in Figure 5, all Rfam 8.0 models can be supported using 21 bits.

![Distribution of maximum scores of all CMs in the Rfam 8.0 database](image)

Fig. 5: Distribution of maximum scores of all CMs in the Rfam 8.0 database
Although positive saturation is of much greater concern for this architecture, it is still important to note that negative saturation is also a possibility. However, unlike when finding the maximum possible score for a CM, there is no single path through a CM that defines the minimum possible score. In fact, there are many paths through a CM, all certain to include some combination of insertion and deletion states, that will result in very low scores. To determine which of these paths provides the minimum possible score for a CM, a score must be computed for all paths in the CM. However, this is still insufficient to ensure that negative saturation cannot occur. Because the number of insertions is bounded by the window size W, and W can be increased (or decreased) by a knowledgeable computation biologist, it is impossible to definitively compute a minimum score for a CM. Increasing W increases the number of insertions possible, thereby decreasing the minimum possible score.

Instead of trying to determine the minimum score possible for a CM, it is straightforward to show that any sequence that causes negative saturation cannot also exceed a score reporting threshold ρ when $\rho > 0$. Scores that are less than zero are uninteresting since a sequence that generates such a score does not align well to the CM.

The maximum positive value that can be computed for a CM \mathcal{M} has already been defined as $\gamma_{\text{max}}(\vec{\pi}|\mathcal{M})$, which can be represented as a two’s complement signed integer using k bits. That is, $0 < \gamma_{\text{max}}(\vec{\pi}|\mathcal{M}) \leq \frac{2^k}{2}$. In a two’s complement system, these k bits are also sufficient to represent $-\left(\frac{2^k}{2} + 1\right)$ where $-\left(\frac{2^k}{2} + 1\right) < -\gamma_{\text{max}}(\vec{\pi}|\mathcal{M}) < 0$. Therefore, for any negative value γ_{nsat} that causes negative saturation, $\gamma_{\text{nsat}} < -\left(\frac{2^k}{2} + 1\right) < -\gamma_{\text{max}}(\vec{\pi}|\mathcal{M}) < 0$. From this, it follows that $\gamma_{\text{nsat}} + \gamma_{\text{max}}(\vec{\pi}|\mathcal{M}) < 0 \leq \rho$. Thus it is shown, that if negative saturation does occur, there is not enough “positive value” (i.e. no path through \mathcal{M}) that will allow a sequence to generate a final score that is greater than or equal to ρ. Therefore, negative saturation may cause computational errors, but these errors are ignorable since any score containing one of these errors will never be reported.

4. **THE BASELINE ARCHITECTURE**

To better understand the level of acceleration achievable using custom hardware, a baseline architecture was developed. The baseline architecture computes the value for each cell of the dynamic programming (DP) matrix immediately after (i.e. on the next clock cycle) all of the cells that it depends on have been computed. That is, the baseline architecture computes all the values for the three-dimensional DP matrix in the fewest possible clock cycles. As a single engine solution, the baseline architecture represents an optimal solution to the DP problem described in Section 3.3. However, as discussed later in this section, the resource requirements of the baseline architecture make it impractical for even small CMs.

4.1 **Overview**

The baseline architecture takes advantage of the graph-like structure of covariance models (CMs) and converts the structure directly into a pipelined architecture of processing elements (PEs), where each PE represents a cell in the DP matrix. Provided a CM from the Rfam database, the pipelined architecture can be automatically
cally generated specifically for that CM. The generated hardware can subsequently be programmed onto reconfigurable hardware for an optimal hardware solution for that specific CM.

As mentioned in Section 3.3, each state in a CM is represented as a two-dimensional matrix of width $W + 1$ and height $L + 1$, where W is the size of the window sliding over the target sequence in which to align the CM, and L is the length of the target sequence (typically, $W \ll L$). There are M such two-dimensional matrices, where M is the number of states in the CM. For a given CM, there are a total of approximately MWL matrix cell values that need to be computed to score the CM against all possible subsequences of a target sequence that are of length $\leq W$.

However, it is not necessary to have the hardware resources for a PE for each of the MWL cells in the DP matrix. Instead, the number of PEs required can be reduced by observing that each position of the sliding window can be computed independently of all other window positions. This means that the pipelined architecture only needs PEs for a single window position which can be reused for all other window positions. Because of hardware reuse, the actual number of PEs required in the pipeline is approximately $M(W + 1)^2$, which is much less than MWL for large genome databases.

4.2 Processing Elements

To best illustrate the baseline architecture, this section presents an example CM, the corresponding architecture, and implementation results. A small example CM, along with its expanded state notation, is shown in Figure 6. The CM represents a very small consensus secondary structure consisting of only three residues, where the first and the third residues are base-paired. The CM consists of four nodes and thirteen states, as shown in Figure 6.

Figure 7 provides a high-level view of how the CM is converted into a pipeline. States at the bottom of the CM are computed first and are thus at the beginning of the pipeline. The states in the $ROOT_0$ node are computed last and are thus at the end of the pipeline. A residue pipeline feeds the target sequence through a pipeline from which PEs can determine what emission score (if any) should be added to their score.

As described earlier, each state in a CM can be represented as a two-dimensional matrix of width and height $W + 1$. For the example CM described here, the window size was configured as $W = 3$, resulting in a total of thirteen 4×4 matrices. One of those matrices representing state ML_4 is shown in Figure 8. Note that the first column of the matrix is initialized to $-\infty$ as described by the DP algorithm in Section 3.3. The dark gray cells in the matrix need not be computed as they represent negative values of i, the starting position of a subsequence. The remaining matrix cells contain the values that are computed as part of the DP computation. They represent the log-odds scores that the subsequences represented by those matrix cells are rooted at the given state.

Figure 8 also shows an example of a PE that is part of the pipelined architecture. The number of children states that a state may depend on ranges from one to six, depending on the structure of the CM. This particular PE is part of a state that has four children states as illustrated in Figure 6. Therefore, the maximization portion of the PE requires four adders and three comparators. An additional adder is
Fig. 6: A small CM, consisting of four nodes and thirteen states, represents a consensus secondary structure of only three residues.

Fig. 7: A high-level view of a pipeline for the baseline architecture.
Fig. 8: Each CM state is represented as a two-dimensional matrix, and each matrix cell is represented as a processing element containing adders and comparators.

included to factor the emission probability into the computation, which is dependent on the input residue at location x_i of the target sequence in an ML type state (MR states depend on the residue at location x_j of the target sequence, and MP states depend on the residue at both the x_i and the x_j locations of the target sequence). The largest PE, which contains inputs for six children states, has a total of seven adders and five comparators.

In the PE shown in Figure 8, gray boxes represent the constant values for transition and emission probabilities from the CM. For example, $ML_{4_t}(7)$ represents the transition probability from state ML_4 to state IL_7. The value $ML_{4_e}(G)$ represents the probability that the residue G is emitted by state ML_4 of the CM. The other inputs, such as $IL_{7,3,2}$, represent the matrix cell values computed in the child states of state ML_4. More specifically, $IL_{7,3,2}$ represents the score output from the PE for the matrix cell $IL_{v,j,d}$ where v is the state number, j is the position of the last residue of the subsequence, and d is the length of the subsequence.

The output of the PE, $ML_{4,3,3}$ represents the score of the subsequence $x_1...x_3$ when rooted at state ML_4. This value is forwarded to the PEs in the pipeline that depend on it. For this CM, the PE $ML_{4,3,3}$ only has a single dependent, $S_{0,3,3}$ as per the structure of the CM shown in Figure 6 and the DP algorithm described in Section 3.3. Note that states IL_1 and IR_2 are also dependent on state ML_4. However, because both of those state types depend on values from column $d - 1$, neither of them contain PEs that are dependent on the last column of a child state.

For the baseline architecture, all values are represented using 16-bit signed in-
tegers. This provides a sufficient number of bits to compute the results for small CMs without causing overflow. All adders and comparators in the hardware are implemented as 16-bit adders and comparators.

4.3 Pipeline

Based on the structure of the CM, PEs are created and wired together to create the pipeline for the baseline architecture. Figure 9 shows a small portion of the pipeline required for the CM in Figure 6. The portion shown represents the first three rows (i.e. \(j = 0 \) through \(j = 2 \)) of the first three states (i.e. \(S_0, IL_1, \) and \(IR_2 \)) in the CM. The final results for subsequences are output from the \(S_{0,j,d} \) PEs which represent the \(S \) type states from the \(\text{ROOT}_0 \) node.

![Figure 9: 18 of the 130 PEs required to implement the CM shown in Figure 6 using the baseline architecture. The full pipeline structure can be automatically generated directly from a CM.]

4.4 Implementation Results for Baseline Architecture

An implementation of the CM shown in Figure 6 was developed to compare the performance of the baseline architecture to the performance of the INFERNAL (version 0.81) software package. The evaluation system for the INFERNAL software contains...
The results for the baseline architecture running at 100 MHz shows a 24.5× speedup. As with QDB, these results are quite conservative compared to the possible speedup achievable with the baseline architecture. The baseline architecture processes one residue per clock cycle regardless of the size of the CM. At 100 MHz, the baseline architecture can process a database sequence of 100 million residues.

Table II: Performance comparison between INFERNAL and the baseline architecture

<table>
<thead>
<tr>
<th>Run Type</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFERNAL</td>
<td>17m19.287s</td>
<td>1</td>
</tr>
<tr>
<td>INFERNAL (QDB)</td>
<td>14m28.706s</td>
<td>1.2</td>
</tr>
<tr>
<td>Baseline Architecture</td>
<td>0m42.434s</td>
<td>24.5</td>
</tr>
</tbody>
</table>
in 1 second (plus the latency of the pipeline, \(\sim 60 \) clock cycles for the CM implemented here). The additional time shown in Table II (42.434 – 1 = 41.434 seconds) represents the time to read the sequence from disk, transfer the sequence to the hardware, and retrieve the results. As the size of the CM increases, the time to send the database sequence to the hardware will stay the same, and the processing time will increase only slightly as the latency of the pipeline increases. Therefore, the degree of acceleration achievable is much greater with larger CMs. Provided a device with sufficient hardware resources, the baseline architecture could achieve a speedup thousands of times faster than INFERNAL running on a traditional CPU.

However, the high resource requirement of the baseline architecture makes the approach somewhat impractical for today’s technologies. Figure 10 charts the percentage of Rfam 8.0 CMs that will fit onto hardware in a given year provided that technology continues to improve at the rate specified by Moore’s law. Note that at the time of writing, only about 5% of the CMs in the Rfam 8.0 database can be converted into a pipelined architecture that will fit on today’s hardware.

![Percentage of CMs that fit onto FPGA over time](image)

Fig. 10: Percentage of CMs that will fit onto hardware in a given year

4.5 Expected Speedup for Larger CMs

The experimental results presented in Section 4.4 are for a very small CM. This section estimates the expected speedup that the baseline architecture can achieve when processing much larger CMs. The estimate is based on several factors including the depth of the pipeline required to process the CM, the I/O time required to transmit...
100 million residues to the baseline architecture (as measured in Section 4.4), and a clock frequency of 100 MHz for the baseline architecture.

<table>
<thead>
<tr>
<th>CM</th>
<th>Num PEs</th>
<th>Pipeline Width</th>
<th>Pipeline Depth</th>
<th>Latency (ns)</th>
<th>HW Processing Time (seconds)</th>
<th>Total Time with measured I/O (seconds)</th>
<th>Infernal Time (QDB) (seconds)</th>
<th>Infernal Time (QDB) (seconds)</th>
<th>Expected Speedup over Infernal</th>
<th>Expected Speedup over Infernal (w/QDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF00001</td>
<td>3539545</td>
<td>39492</td>
<td>195</td>
<td>196500</td>
<td>1.0000195</td>
<td>42.4340206</td>
<td>349492</td>
<td>126443</td>
<td>8236</td>
<td>3027</td>
</tr>
<tr>
<td>RF00016</td>
<td>5484002</td>
<td>43256</td>
<td>282</td>
<td>282000</td>
<td>1.0000282</td>
<td>42.4340282</td>
<td>336000</td>
<td>185521</td>
<td>7918</td>
<td>4443</td>
</tr>
<tr>
<td>RF00034</td>
<td>3181038</td>
<td>38772</td>
<td>187</td>
<td>16700</td>
<td>1.0000167</td>
<td>42.4340167</td>
<td>314836</td>
<td>97520</td>
<td>7419</td>
<td>2062</td>
</tr>
<tr>
<td>RF00041</td>
<td>4243415</td>
<td>44569</td>
<td>200</td>
<td>20600</td>
<td>1.0000206</td>
<td>42.4340206</td>
<td>388136</td>
<td>118592</td>
<td>9147</td>
<td>2797</td>
</tr>
</tbody>
</table>

Table III: Estimated speedup for baseline architecture running at 100 MHz

The results are presented in Table III. The latency of the pipeline is computed as \(\text{PipelineDepth} \times \text{PE Latency} \) where the PE latency is 10 cycles \(\frac{10 \text{ cycles}}{100 \text{ MHz}} \) since each PE has a 10 cycle latency. The hardware processing time is the time, in seconds, that it takes the baseline architecture to process 100 million residues when running at 100 MHz. This includes the latency of the baseline architecture's pipeline. The total time is the expected time, in seconds, to process 100 million residues with the baseline architecture, including the 41.434 seconds (measured in Section 4.4) required to transmit 100 million residues to the baseline architecture. The time required for Infernal to process a database of 100 million residues was estimated from the measured time required to process 1 million residues on the test machine described in Section 4.4. The expected speedup over Infernal for four different CMs from the Rfam database is shown in Table III. The baseline architecture exhibits an estimated speedup of over 9,000× over the Infernal software for CM RF00041. A speedup of over 4,000× is estimated for CM RF00016 when Infernal is run with the QDB heuristic. Results for additional CMs from the Rfam 8.0 database, where the speedup exceeds 13,000× for some CMs, can be found in [Moscola 2008].

5. THE PROCESSOR ARRAY ARCHITECTURE

Section 4 described a baseline architecture for accelerating RNA secondary structure alignment in hardware. By unrolling the alignment computation into individual processing elements, the baseline architecture can potentially process genome databases many thousands of times faster than software approaches such as Infernal. However, the baseline architecture is limited by the steep resource requirements needed for the vast number of computations in the alignment. This section introduces a second architecture that employs a stored program model, where alignment computations are divided up onto an array of processing elements (PEs) that can be used to perform the computation. The number of PEs in the processor array can be increased or decreased to make the best use of available hardware resources. PEs in the processor array architecture are similar in structure to those described in Section 4 (e.g. Figure 8) with the only difference being that the constant transition and emission probabilities from the baseline architecture are replaced with rewritable registers. This allows each PE in the processor array to act as a shared resource that can compute the result of any computation in the dynamic programming (DP) matrix.

Because the number of PEs is far less than the number of computations required to align an RNA sequence to a covariance model (CM), computations must be scheduled onto the available PEs. The remainder of this section describes the processor array architecture. Section 6 describes a scheduling algorithm capable of scheduling the necessary DP computations onto the processor array.

5.1 Overview

The processor array architecture generalizes the approach taken with the baseline architecture presented in Section 4. The baseline architecture utilizes individual PEs for each computation in the graph-like structure of CMs. This limits the size of the CMs that can be processed using the baseline architecture as the number of PEs is bounded by physical hardware resources. The processor array architecture described in this section employs PEs using a more general technique so that any PE can be utilized to compute the result of any computation in the graph-like structure of a CM.

The processor array architecture consists of three main components, an array of processing modules (PMs), a multi-port shared memory structure, and a reporting module. Inputs to the processor array architecture consist of a stream of residues, which is replicated and sent to each PM, and a stream of instructions, which is divided up so instructions are sent to the appropriate PM. The mapping of instructions to PMs is discussed in Section 6.2.2. The architecture outputs only the scores for high scoring alignments. A high-level block diagram of the processor array architecture is illustrated in Figure 11. Each of the main components for the processor array architecture is described in more detail in the following sections.

![Fig. 11: A high-level block diagram of processor array architecture with two processing modules. The number of processing modules can be scaled as shown with dashed lines.](image-url)

5.2 Processing Modules

The processing module is where all of the computation required for the RNA alignment takes place. A block diagram of a PM is shown in Figure 12.

The core of the PM is similar to the PEs used in the baseline architecture. Each PE consists of seven saturating adders and five comparators. The first six saturating adders are used to sum results from previous computations with transition probabilities associated with the state of the current computation. The five comparators in the PE determine the maximum value from those summations and pass that value to the final adder in the PE. The final saturating adder adds an emission probability which is selected from the local emission probability memory. When a computation does not require the addition of an emission probability, like those for start (S), delete (D), and bifurcation (B) states, a value of zero is presented to the adder so as not to affect the result of the maximization portion of the PE. Likewise, not all states in a CM have six children states, thus not all computations require all six adders in the maximization portion of the circuit. In such cases, the largest negative number possible (dependent on the number of bits used in the architecture) is presented to the unused adders so as not to affect the result of the maximization portion of the PE.

Fig. 12: Block diagram of a single PM. Dashed lines represent components that are only needed on the first PM.

In addition to the PE core, PMs also contain a variety of memories for different functions of the PM. An instruction FIFO collects and stores instructions from an input stream until they are ready to be executed. A dual ported residue memory stores a single window’s (W) worth of residues. Only one port is used when executing computations for the single emission states ML and MR. Both ports are required when executing computations for the pairwise emission state MP.

Each PM also contains its own memory for storing CM information such as transition and emission probabilities. Transition and emission probabilities are loaded

into the memory during initialization and reused throughout the computation. Because each PM has its own CM memory, it has unrestricted access to the probabilities required for the alignment computation. Additionally, the CM memory for each PM stores only the probabilities required by the computations that are to be executed on that PM. During an alignment computation, the necessary transition and emission probabilities are read from the CM memory and stored in local registers where they are immediately available to the PE. This design makes effective use of distributed memories, such as block RAMs on an FPGA or embedded SRAM on an ASIC.

Data computed by each PM is stored in a shared memory that is shared by all PMs in the processor array architecture. For each instruction executed, each PM may issue up to six reads to the shared memory. The data returned from the shared memory is used as input to the PE adders. Because each PM only produces a single result for each instruction executed, only a single write interface to the shared memory is required.

Scaling the performance of the processor array architecture can be accomplished by increasing the number of PMs in the array. A discussion on the scalability of the processor array architecture is presented later in Section 7.4.

5.2.1 Instruction Format. The instruction format utilized by the processor array architecture is a long instruction word that contains all of the information necessary to complete the computation. The instruction format has fields for the state value \(v \), the starting position of a test alignment \(i \), the end position of a test alignment \(j \), six read address pointers \(raddr_0 \) through \(raddr_5 \), and a write address pointer \(waddr \) where the result is to be written. An example of the long instruction word is shown below:

\[[v, i, j, raddr_0, raddr_1, raddr_2, raddr_3, raddr_4, raddr_5, waddr] \]

The number of bits required for each of the fields in the instruction word is dependent on a number of factors. The values for \(v \), \(i \), and \(j \) must be large enough to handle the largest CMs that are to be processed. Using 10 bits for each of \(v \), \(i \), and \(j \) allows the processor array architecture to process CMs with up to 1024 states and window sizes \(W \) up to 1024. The number of bits required for each of the read address pointers and the write address pointer is dependent on the number of processors in the processor array architecture. More details on the number of bits required for each pointer are discussed in Section 7.4.2.

The analysis presented later in Section 7 is based on fixed-length instructions as described above. However, it would also be possible to use variable-length instructions for the processor array architecture. Based on an analysis of the CMs in the Rfam 8.0 database, the average number of reads required for a computation is approximately 4, where \(\sim 42\% \) of computations required 3 reads and \(\sim 40\% \) of computations require 6 reads. Eliminating the unnecessary read addresses from instructions could help to reduce the bandwidth required for instruction execution considerably.
5.2.2 Executing Instructions. Instruction execution on the processor array architecture works similarly to that of a traditional instruction pipeline, with stages for fetching and decoding instructions, reading and writing data memory, and execution. On each clock cycle a single instruction is read from the instruction FIFO of the PM. The seven memory addresses (one write address, and up to six read addresses) are sent to the data address decoder where they are divided onto the respective read of the shared memory interface. The data address decoder also extracts the write address, that is the shared memory location where the result of the instruction should be stored, and sends it to a delay module. The write address is not needed until the computation has completed. Other portions of the instruction that indicate the state number as well as the i and j residue positions for the computation are also delayed until the data from the shared memory becomes available.

The data returning from the shared memory represents computations from the CM states that are children of the current CM state computation being executed. Synchronously with the arrival of data from the shared memory, the necessary transition and emission probabilities are read from the CM memory and stored in local registers. Additionally, one or two residues are read from the residue memory and used to select the emission probability that will be used, if any, by the PE to complete the computation.

Upon completion of the computation by the PE, the result is written to shared memory in the location specified by the instruction and previously stored in the delay unit. Computations for state $v = 0$ are not stored in the shared memory structure. Instead, they are sent to a reporting module for further processing.

5.3 Shared Memory Structure

One of the pivotal components of the processor array architecture is the shared memory structure. Throughout the alignment computation, results computed on one PM may be required by other PMs in the processing array. The shared memory structure provides a means for communicating results between PMs.

The shared memory structure is a large memory bank composed of many smaller memories, each with its own read and write interfaces. This approach allows a large number of independent reads and writes per clock cycle and increases the effective bandwidth of the memory interface. The shared memory is partitioned in such a way so that each PM writes results to a designated region of the memory. However, each PM can read any location from any of the available memories in the structure. Furthermore, each PM can issue up to six memory reads per clock cycle. Therefore, if the processor array has multiple PMs, the number of concurrent memory reads on any given clock cycle may be as high as $6p$ where p is the number of PMs in the processing array.

The size and number of each memory required in the shared memory structure is dependent on the CM being processed. However, since each PM can issue up to six simultaneous reads to the shared memory structure, the minimum number of individual memories required for each PM is six. A discussion on the required size of those memories is presented in Section 7.3.
5.3.1 **Writing Results to the Shared Memory Structure.** As previously mentioned, each PM in the processor array architecture is allocated a portion of the shared memory structure where it writes its results. Additionally, because each PM only needs to write a single result per clock cycle, the write interface of the shared memory structure is considerably simpler than the read interface. Figure 13 illustrates the write interface to one region of the shared memory structure. The region shown is for a single PM and consists of six individual memories. In the example configuration, the value being written is an 18-bit value and the write address is a 15-bit value. The most significant bits are used to select which of the available memories in which to write the data. The remaining bits of the write address are used to address the individual memories.

![Write interface configuration for a single PM with six individual memories](image_url)

Fig. 13: Write interface configuration for a single PM with six individual memories

5.3.2 **Reading Data from the Shared Memory Structure.** The read interface for the shared memory structure allows any PM in the processor array architecture to read a value from any memory in the structure. To accomplish this, the available memories in the shared memory structure are interfaced to the PMs via a pair of switching fabrics. There are many types of switching fabrics available, each with its own pros and cons. The requirements for the shared memory structure are that the switching fabric be non-blocking and that it be scalable. Non-blocking behavior is desirable so that all memory reads have the same known latency. This ensures that all PMs in the processing array can operate continuously without running the risk of desynchronization with other PMs. As described later, synchronization between PMs is built into the schedules for each PM. Using a switching fabric with blocking behavior (i.e. buffering) could stall a memory read for one PM while allowing another to proceed. This could desynchronize the PMs producing unknown results. The switching fabric must also be scalable so that as more PMs are added to the processing array, more read interfaces can be added to the shared memory structure.

Given these requirements, a Banyan switch [Goke and Lipovski 1973] was selected to interface the PMs to the memories in the shared memory structure. Banyan switches are non-blocking and scalable [H. Ahmadi and W. Denzel 1989]. Additionally, Banyan switches can be easily pipelined, allowing for very high-speed designs. However, the Banyan switch does have two restrictions that need to be
considered. The first restriction is that no two inputs to the Banyan switch can be routed to the same output port. This would result in contention not only at the output of the Banyan switch, but also at the memory since each memory only has a single read interface. This type of contention is prevented by ensuring that no two PMs are ever scheduled to read the same memory interface on any given clock cycle. Section 6.2.3 provides more details on removing memory contention from the schedule.

The second restriction of the Banyan network is that certain inputs can cause internal collisions [H. Ahmadi and W. Denzel 1989]. An internal collision in the Banyan switch can result in one or more of the inputs being routed to the wrong output port. As shown by Batcher, these types of collisions can be avoided by pre-sorting all inputs to the switch [Batcher 1968]. A Batcher switch, which performs a merge sort on its inputs, can be used to pre-sort memory read prior to sending sorting all inputs to the switch. On each clock cycle, the Batcher switch can take up to \(k \) inputs. Those \(k \) inputs are then sorted in ascending order and output on the first \(k \) outputs of the Batcher switch. The sorted outputs of the Batcher switch can then pass through the Banyan switch with no collisions.

Figure 14 shows the configuration of the Batcher and Banyan switches as well as the individual memories. To perform a read on one of the memory interfaces, a PM combines a 16-bit memory address with a 4-bit return address. The most significant bits of the memory address are used to route the read through the switching fabric to the appropriate memory. The remaining bits of the memory address are used to read the required value from the memory. The 4-bit return address is used to route the newly read data back to the appropriate interface of the PM that issued the read. The memory structure in Figure 14 illustrates the structure required when using two PMs, each with six memories. The number of bits required to route memory reads from PMs to the appropriate memory, and the resulting value back

Fig. 14: Switched read interface for two PMs, each with six individual memories
to the PM, varies with the number and size of individual memories in the shared memory structure and the number of PMs in the processor array.

5.4 Reporting Module

The reporting module is a small component that resides at the output of the first processing module. The function of the reporting module is to compare the scores that are output from the processing module to some threshold value and report any scores that exceed that threshold. Along with the score, the reporting module also reports the starting position i and ending position j of the high-scoring alignment. Since the final scores for an alignment are computed in state $v = 0$ at the root of the CM, and because of the way computations are assigned to the available processing modules (discussed later in Section 6.2.2), only the first processing module requires a reporting module.

6. SCHEDULING COMPUTATIONS ON THE PROCESSOR ARRAY

The number of PEs that can be utilized by the processor array architecture is dependent on the implementation platform. Platforms with more hardware resources can accommodate more PEs than platforms with fewer hardware resources. To determine how each of the available PEs are used, a polynomial-time scheduling algorithm is employed to determine the ordering of computations and how those computations are distributed among the available PEs.

As shown in Section 4, the DP computation required to align a target sequence to a CM can be thought of as a directed task graph. A survey paper by Kwok and Ahmad provides an in-depth survey of static scheduling algorithms for mapping directed task graphs to multiple processors [Kwok and Ahmad 1999]. In this survey, the authors note that there are only three special cases for which there currently exists optimal, polynomial-time scheduling algorithms. Those cases, as enumerated by Kwok and Ahmad [Kwok and Ahmad 1999], are: (1) scheduling tree-structured task graphs with uniform computation costs onto an arbitrary number of processors [Hu 1961], (2) scheduling arbitrary task graphs with uniform computation costs on two processors [Coffman and Graham 1972], and (3) scheduling an interval-ordered task graph [Fishburn 1985] with uniform node weights to an arbitrary number of processors [Srinivas and Patnaik 1994].

By using PEs that have constant computational latency, the problem of scheduling the task graph that represents the DP matrix for RNA alignment fits into the first special case listed above. An algorithm developed by T.C. Hu [Hu 1961] provides an optimal, linear-time scheduling algorithm for such problems, and a good starting point for scheduling the DP matrix computations onto the available PEs.

6.1 Optimal Scheduling of Directed Task Graphs

Hu’s scheduling algorithm [Hu 1961] constructs optimal schedules for tree-structured directed acyclic task graphs where each graph node takes unit computation time. The algorithm works for an arbitrary number of processors and can therefore be used regardless of the number of PEs available on a given platform. The scheduling algorithm runs in linear time in terms of the number of DP matrix cells in a CM that need to be scheduled.
For the processor array architecture, a schedule is constructed for a single window position of the CM over the input genome database. That schedule can then be reused for each window position of the CM. Hu’s scheduling algorithm processes each cell in the DP matrix as a graph node in a task graph. The first stage of the scheduling algorithm involves labeling each of the nodes in the graph with a distance value. Starting from the exit node of the graph (all $S_{0,j,d}$ cells of ROOT_0 are exit nodes and all $E_{v,j,d}$ cells are entry nodes), each node is labeled with its distance from the exit node. The distance of a node is the number of graph edges between that node and the exit node. If multiple paths exist, a node is assigned the distance of the longest path.

Once all the nodes in the graph have been labeled, an optimal schedule for a platform with p processors can be constructed as follows: (1) schedule the p (or fewer) nodes with the greatest distance labels and no predecessors. If there are more than p nodes with no predecessors, nodes with higher distance labels should be scheduled first. If there are fewer than p nodes with no predecessors, then fewer than p nodes must be scheduled and some processors will go unused during that time slot; (2) remove the nodes that were scheduled in step (1) from the graph; (3) repeat steps (1) and (2) until all nodes are scheduled and there are no more nodes in the graph. Figure 15 provides a flow diagram of Hu’s scheduling algorithm. Figure 16(a) illustrates an example task graph where each node is labeled with a distance d from the end node N_0. A schedule developed using Hu’s algorithm for an unlimited number of processors (i.e. $p = \infty$) is shown in Figure 16(b). Figure 16(c) shows a schedule for the same task graph when only two processors are available.

6.2 Scheduling Task Graphs on Finite Resources with Computational Latency

While Hu’s scheduling algorithm does provide a good starting point for scheduling the DP matrix computations, there are a few shortcomings with Hu’s algorithm as it relates the desired application. The first of these shortcomings is that the algorithm does not account for physical hardware resources or computational latencies. For example, the example schedule in Figure 16(b) shows that graph nodes N_2 and N_1 can be scheduled at time $t = 1$, and that the graph node N_0 can be scheduled in
the subsequent time slot \(t = 2 \). However, if the computation represented by node \(N_0 \) is dependent upon the result of the computation represented by node \(N_1 \), and there is some latency associated with computing the result of node \(N_1 \), then node \(N_0 \) cannot be scheduled until time \(t_{N_0} = t_{N_1} + l \), where \(l \) is the computational latency.

Another hardware restriction that Hu’s scheduling algorithm does not take into account is memory. The problem originates from the arbitrary choice of \(p \) computations from the pool of available computations at each time slot. In scheduling computations arbitrarily, Hu’s algorithm does not account for the possibility that multiple computations may require accessing different data from the same memory bank. Without memory arbitration, this could lead to potential memory conflicts. With memory arbitration, additional control would be required to ensure that the PEs do not become desynchronized.

Finally, Hu’s algorithm does not take advantage of any problem-specific knowledge. For example, if there are more than \(p \) computations that can be scheduled in a particular time slot, each with an identical distance label, Hu’s algorithm does not differentiate between them. Instead, \(p \) of the available nodes are chosen arbitrarily and scheduled. Choosing nodes more intelligently by utilizing additional information associated with each node may help to reduce the hardware resources required and the total time required to complete the computation.

The remainder of this section describes several modifications that were made to Hu’s scheduling algorithm to produce an algorithm suitable for scheduling the DP matrix computations for RNA alignment onto an array of processors while accounting for hardware restrictions. Instead of specifying some number of processors to Hu’s scheduling algorithm and allowing the algorithm to choose the ordering of computations arbitrarily, Hu’s scheduling algorithm is run on a task graph assuming an unlimited number of processors. The output is an optimal schedule for the task graph that provides the earliest possible time that each node can be scheduled (see Figure 16(b)). From that schedule, restrictions can be introduced and intelligent decisions can be made regarding which of the available computations should be scheduled in a given time slot. A flow diagram of the modifications to Hu’s

Fig. 16: (a) An example task graph with distance labels; (b) schedule for task graph in (a) using unlimited processors; (c) schedule for task graph in (a) using two processors
schedule is shown in Figure 17.

Fig. 17: Flow Diagram of Modified Hu’s scheduling algorithm

6.2.1 Accounting for Computational Latency. The first modification to Hu’s scheduling algorithm was developed to account for the computational latency of the PEs used in the architecture. Although the time to complete each computation is uniform, this time must still be represented in the schedule. This is because each time slot in the schedule is the equivalent of a single clock cycle in hardware, and without the appropriate delays built into the schedule a computation may be scheduled to execute prior to the availability of a required result from a previous computation. Accounting for the latency of a computation can be done by recursively traversing the task graph and setting the scheduled time for each child of a node \(n \) to \(t_{\text{childNode}} = \max(t_{\text{childNode}}, t_n + l) \). Figure 18(b) shows the effect of adding computational latency equal to 10 time units into the schedule. Note that the scheduled times for the nodes in Figure 18(b) are no longer \(t = 0, 1 \) and 2 as they were in Hu’s original algorithm (Figure 15), but instead \(t = 0, 10 \) and 20.

Fig. 18: (a) An example task graph with distance labels; (b) schedule for task graph in (a) using unlimited processors and accounting for a 10 time unit computational latency; (c) schedule for task graph in (a) using two processors and accounting for a 10 time unit computational latency

Accounting for computational latency in the initial Hu schedule will still result in an optimal schedule with regards to how quickly the hardware platform can correctly produce the result of the desired computations. If no other changes are made to the initial Hu schedule, then a modified Hu schedule that accounts for the computational latency of the hardware will be exactly $\text{ScheduleLength}_{Hu} \times l$ in length. However, throughout the development of a schedule, computations may be delayed for various other reasons as described in the next few sections. Each time the scheduled time of a computation is adjusted for other conflicts, all descendants of that computation in the task graph need to be adjusted to account for the computational latency. Because not all conflicts are resolved optimally, the final modified schedule may no longer be optimal.

6.2.2 Processor Assignment. The schedule produced in the previous section accounts for the computational latency. However, it still assumes that there are an infinite number of processors on which to schedule the computation. From the assumption of an unlimited number of processors, a schedule can be obtained for a given CM that completes the work as quickly as possible. A bound on the number of useful processors can then be obtained from that schedule, assuming every computation is completed on a different processor. While a finite number of processors now suffices, instantiation of so many processors (see Section 4.4) will likely exceed any reasonable resource availability. Thus, we must consider the issues that arise from scheduling a CM to execute on a number of processors that is relatively small compared to the maximum number of processors that could be used. Thus, the next modification to the schedule accounts for the limited number of processors, or PEs, available in the architecture. Starting with the schedule produced in Figure 18(b), if the number of processors available is limited to two processors, the schedule must be altered to reduce the number of computations at time $t = 0$. All three computations represented by nodes N5, N4, and N3 cannot be computed in the same time slot. Instead, one of those computations must be delayed and scheduled at a later time. In the example shown in Figure 18(c), the computation for node N3 is delayed one time unit and rescheduled at time $t = 1$. Node N3 is not dependent on nodes N5 or N4, so it is not necessary to delay node N3 more than a single time unit. Node N0, which is dependent on node N3, is unaffected by N3’s newly scheduled time because it is scheduled for time $t = 20$ which is greater than $t_{N3} + l$ where l is still 10 time units. Because this adjustment is dependent on the actual number of PEs available, as the architecture is scaled to include more PEs, new schedules will need to be generated.

In the above example, the computation for node N3 was arbitrarily chosen to be delayed while nodes N5 and N4 remained scheduled at time $t = 0$. However, when scheduling the DP matrix computations for aligning an RNA sequence to a CM, the choice of which computations should be assigned to which PEs, and which computations should be delayed, is based on a number of factors.

The first factor in determining the ordering and processor assignment of computations is based on how CM information, such as transition and emission probabilities for each CM state, is stored by the processor array architecture. If all of the CM information were to be stored in a single memory in the processor array architecture, then PEs could not efficiently retrieve the probabilities required...
if computations for multiple different CM states were scheduled in a single time slot. This is because different CM states require different transition and emission probabilities and scheduling multiple different states in a single time slot would result in memory contention. Instead, all computations for a particular CM state are assigned to the same PE regardless of where they occur in the schedule. This allows the CM information to be divided among several smaller memories that are local to each PE. Each PE stores only the portion of the CM information that is required for the states that it is scheduled to process. This eliminates any contention that may have occurred by storing CM information in a global memory used by all PEs. Computations are assigned to a PE based on their CM state number, $PE\# = v \% p$, where v is the CM state number to which the computation is a member, and p is the number of PEs available.

Other information about the computations is also used to determine the order in which computations should be completed and which computations are delayed. As shown in Figure 4, the DP parsing algorithm treats CMs as a tree structure and computes values starting at the bottom of the tree and ending at the top of the tree. That is, the algorithm computes values from state $v = M - 1$ down to $v = 0$. Computations in each time slot are scheduled in a similar fashion, where those with higher state values are scheduled first. If there are multiple computations with the same state value in a given time slot, then those with the earliest schedulable time are scheduled first. Note that the earliest schedulable time may not be the actual time that a computation is scheduled due to the limited hardware resources. As an example, refer back to Figures 18(b) and (c) where the earliest schedulable time for node N3 was $t = 0$, but the actual time the node was scheduled was $t = 1$.

6.2.3 Eliminating Memory Contention. The last consideration when developing a schedule for the processor array architecture is memory contention. As described in Section 5.3.2, no two computations can access the same memory interfaces in any given time slot of the schedule. To prevent memory conflicts, computations are first assigned to processors as described in the previous sections. Then, for each instruction in a time slot, unique memory addresses are provided from which to read previous results in the alignment computation. Each address assigned is bounded to the region of memory that is associated with the computation that produced the result. This, in turn, assigns write locations to the computations that generated the results.

In general, more than one computation in the alignment may require the same result from a previous computation. When scheduled in different time slots, there is no conflict since each of the computations can access the result from memory uncontested during its time slot. However, in some circumstance two computations may require the same result in the same time slot. When this occurs, one of the computations needs to be moved to a different time slot. The example shown in Figure 19(b) illustrates a schedule with a time conflict at time $t = 10$ where both node N2 and N1 need the result of node N4. Because both computations cannot access the same memory in the same time slot, node N1 is moved to the next time slot $t = 11$. While this technique may not produce an optimal scheduling of the computations, it is likely that an optimal approach is NP-complete.
Hardware-Accelerated RNA Secondary-Structure Alignment

Fig. 19: (a) An example task graph with distance labels; (b) schedule for task graph as shown in Figure 18, but with a memory conflict at time $t = 10$; (c) schedule for task graph with memory conflict resolved. Note that N1 was moved to $t = 11$ and its dependent N0 was moved to $t_{N0} = t_{N1} + l = 21$.

7. ANALYSIS OF THE PROCESSOR ARRAY ARCHITECTURE

This section provides an analysis of the processor array architecture and the proposed scheduling technique. From more than 600 CMs in the Rfam database, four were selected to illustrate the behavior of the processor array architecture and the scheduler. The four CMs chosen are of average size with varying numbers of bifurcation states. The characteristics of the four models (RF00001, RF00016, RF00034, RF00041) are shown in Table IV. Data and analysis for additional models can be found in [Moscola 2008].

<table>
<thead>
<tr>
<th>CM</th>
<th>Num Nodes</th>
<th>Num Status</th>
<th>Num W</th>
<th>Num Root</th>
<th>Num MATP</th>
<th>Num MATL</th>
<th>Num MATR</th>
<th>Num BIF</th>
<th>Num BEGL</th>
<th>Num BEGR</th>
<th>Num END</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF00001</td>
<td>91</td>
<td>366</td>
<td>137</td>
<td>1</td>
<td>34</td>
<td>31</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RF00016</td>
<td>107</td>
<td>352</td>
<td>176</td>
<td>1</td>
<td>11</td>
<td>59</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RF00034</td>
<td>104</td>
<td>343</td>
<td>131</td>
<td>1</td>
<td>18</td>
<td>61</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>RF00041</td>
<td>102</td>
<td>377</td>
<td>146</td>
<td>1</td>
<td>29</td>
<td>61</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table IV: Covariance Model Data

7.1 Running Time

The first thing to consider when analyzing the effectiveness of the scheduler is the running time, or the length of the schedule required to produce results. The schedules for the processor array architecture are developed for a single window W of the DP computation. The schedule length, in clock cycles, for a single window of four different CMs is shown in Figure 20. As should be expected, as the number of processors in the processor array increases, the length of the schedule decreases. This is because the total number of computations in the DP matrix stays the same regardless of the number of processors. However, with more processors available, more computations can be done in parallel which decreases the time required for the computation. The most dramatic decreases in schedule length occur between...
one and sixteen processors. The number of bifurcation states in a model does not appear to have an affect on the decreasing schedule length.

![Graph showing the relationship between number of processors and schedule length.](image)

Fig. 20: The length of the scheduled computation decreases as the number of processors available for the computation increases (shown on a log-log scale).

7.2 Scheduling Efficiency

Section 7.1 illustrated that as the number of processors in the processor array increases, the length of the scheduled computation decreases. Although adding more processors consistently decreases the schedule length, it is far from linear. As more processors are added, there are diminishing decreases in the schedule length. This can be illustrated as the speedup and efficiency of a schedule as more processors are added. The speedup is a measure of how much faster a computation can be done with \(p \) processors than with a single processor. The speedup is measured as

\[
\text{Speedup} = \frac{\text{ScheduleLength}_{1\text{ proc}}}{\text{ScheduleLength}_{p\text{ proc}}}
\]

The efficiency of the schedule is a measure of how much idle time must be inserted into the schedule to ensure no conflicts during the computation. This is measured as

\[
\text{Efficiency} = \frac{\text{NumComputations}}{\text{TotalCycles}}
\]

where \(\text{NumComputations} \) is the number of computations that need to be completed for a single window of the specified CM and \(\text{TotalCycles} \) is the total number of clock cycles, among all processors, that are required to compute the results, including any idle time in the schedule.

Figure 21 illustrates both the speedup and the schedule efficiency of the four example CMs. As additional processors are added to the processor array the speedup increases. However, there are diminishing returns as the schedule is divided over more processors. This is especially true for models RF00001, RF00034,
Fig. 21: The speedup shows the diminishing returns as more processors are added to the processors array. The efficiency decreases as more processors are added to the processors array, indicating that more idle time is inserted into the schedule as the number of processors increases.

and RF00041, which have 1, 3, and 2 bifurcations states respectively. CM RF00016 has no bifurcation nodes and shows much greater speedup with the addition of more processors. This behavior is likely due to the combination of the way computations are assigned to processors ($PE\# = v \% p$) and the fact that bifurcation states require a much larger number of computations than non-bifurcation states. These two factors result in a much larger number of computations, those for the bifurcation states, being assigned a single processor. This, in turn, could result in a large number of idle slots being inserted into the schedules for each of the other processors to ensure that all schedules remain synchronized. However, it was noted in Section 6.2.2 that computations are assigned to processors in such a way so as to eliminate the need to unnecessarily duplicate CM transition and emission probabilities. Because bifurcation states do not require probabilities other than those from its children states, it may be possible to evenly distribute bifurcation computations over all available processors in the processor array. This could allow CMs with bifurcations nodes to achieve speedup similar to that of CMs without bifurcation nodes.

7.3 Memory Requirements

One of the main challenges in considering an architecture to accelerate the RNA alignment computations was determining how to handle the memory requirements of the computations. This section provides an analysis on the memory requirements and behaviors for the processor array architecture and the scheduler.
7.3.1 Live Memory Requirements. Figure 22 illustrates the maximum amount of live memory required for a schedule as the number of processors increases. The live memory is the number of DP matrix cells that need to be stored throughout the computation because another computation is still dependent on the value from that cell. Once a stored value no longer has any dependencies, its memory location can be reclaimed.

Increasing the number of processors has very little affect on the maximum amount of live memory required throughout an alignment computation. This means that the total memory required for processor array architecture is independent of the number of processors in the array.

7.3.2 Average Memory/Processor. Figure 22 illustrates the maximum amount of live memory required for a computation for the complete array of processors. However, as discussed in Section 5.3 each processor in the processor array architecture has its own memory in the shared memory structure to which it can write data. Figure 23 illustrates the average memory required per processor as the number of processors increases. When using a single processor, all of the memory required must be associated with that one processor. This can be verified by noting that the average memory required for a single processor, as shown in Figure 23, is equivalent to the maximum live memory required for a single processor in Figure 22.

Figure 22 also shows that as the number of processors in the processor array increases, and hence the total number of individual memories, the amount of mem-
Fig. 23: As the number of processors in the processor array architecture increases, the average memory required per processor decreases.

ory required for each processor decreases. This is because the total number of DP matrix cells that need to be stored does not vary much as the number of processors increases, thus the same number of cells are being stored over a larger number of memories. The decrease in efficiency shown in Figure 21 does not affect the number of cells that need to be stored throughout the computation.

7.3.3 Memory Traces. To understand the behavior of the memory usage throughout an RNA alignment computation, several computations were simulated for two different CMs from the Rfam database. Memory traces were created for the duration of the simulated computation to monitor the required memory throughout the computation. The models chosen to illustrate memory usage were RF00016 and RF00034, which have 0 and 3 bifurcation states respectively. Each of the models were run three times each to simulate 16, 32, and 64 processor configurations. The memory traces for CM RF00016 are shown in Figure 24. The memory traces for CM RF00034 are shown in Figure 25.

The overall profile of each memory trace is a result of the structure of the CM. Therefore, the memory traces for the two CMs have very distinct curves. However, comparing the traces for the two CMs helps to reveal some commonalities in the behavior of the memory usage. First, note that the profile of the memory traces remain fairly consistent regardless of the number of processors. The time scale of the profile is simply compressed or expanded depending on whether there are more or fewer processors. Also note that the peak of each profile (i.e. the maximum live memory) is approximately equivalent regardless of the number of processors.
Fig. 24: Memory trace for CM RF00016

Fig. 25: Memory trace for CM RF00034
This means that the total memory required for the processor array architecture is independent of the number of processors in the array. This was also shown earlier in Figure 22.

7.4 Scalability of Architecture

This section provides an analysis on the scalability of the processor array architecture. It includes a discussion on the logic requirements and the I/O requirements.

7.4.1 Logic Requirements. To determine the logic requirements for different sized processor array architectures, the main components were scaled according to the number of processors in the array. For the processing elements discussed in Section 5.2, this entailed finding the resource requirements for a single processing element and then multiplying those requirements by the number of processors desired. For the shared memory structure, scaling the resource requirements entailed not only increasing the number of ports on the switching fabrics, but also increasing the width of each port. The increased width of each port is due to the additional bits required to address the larger number of ports. Note that the number of processors chosen was determined by the number of ports available on the switches of the shared memory structure. The switches scale as a power of two desired not only increasing the number of ports on the switching fabrics, but also increasing the number of processors in the array. For the processing elements discussed in Section 3.5), as shown in Section 7.3. The live memory requirements in Section 5.2, this entailed finding the resource requirements for a single processing element and then multiplying those requirements by the number of processors desired. For the shared memory structure, scaling the resource requirements entailed not only increasing the number of ports on the switching fabrics, but also increasing the width of each port. The increased width of each port is due to the additional bits required to address the larger number of ports. Note that the number of processors chosen was determined by the number of ports available on the switches of the shared memory structure. The switches scale as a power of two.

<table>
<thead>
<tr>
<th>Processor Array Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num Switches: 6301404825246972 9917324 3799730 1418588 507093 169293 53245 15303</td>
</tr>
<tr>
<td>Banyan Switch: 858036448320 245487 142299 90923 65241 52045 19919 7137</td>
</tr>
<tr>
<td>Batcher Switch: 913541472481 254453 142299 87339 59859 45319 16335 5451</td>
</tr>
<tr>
<td>Total Size: 13664247454710285 21571660 8353550 3208778 1217598 473762 156974 51426</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource Requirements in Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Elements: 13738 23195 57500 112500 243000 487116 940590 1971680 3059456</td>
</tr>
<tr>
<td>Banyan Switch: 5461 9536 19919 5245 10030 1418588 3799730 1151694 6560025 26570832 67061566</td>
</tr>
<tr>
<td>Batcher Switch: 7387 11520 25620 5098195 1994099 762749 285696 102323 35005 11292 3286</td>
</tr>
<tr>
<td>Total Size: 51426 156974 473762 13664247454710285 21571660 8353550 3208778 1217598 473762 156974 51426</td>
</tr>
</tbody>
</table>

Table V: Configuration and resource requirements for different sized processor arrays.

In terms of the individual memories required, if each processor in the processor array architecture is given six memories as described in Section 5.3, then the total number of individual memories required is 6p where p is the number of processors. One of the largest FPGAs available today, the Xilinx Virtex-5, contains over 600 1024x18bit block RAMs, allowing for a total of over 600,000 18-bit memory locations (or 300,000 21-bit memory locations if using the numeric representation discussed in Section 3.5). As shown in Section 7.3, the live memory requirements...
(i.e. the number of memory locations required) rarely exceeds 100,000 entries for the CMs tested. Furthermore, as the number of processors is increased, the average memory required per processor decreases. Because the maximum amount of live memory stays fairly consistent regardless of the number of processors (22), the average memory required per processor has an almost perfect inverse relationship to the number of processors. That is, doubling the number of processors reduces the average memory required per processor by half. However, because the memory requirements differ for each CM, no general statement can be made regarding the ability, or the inability, of a hardware device to handle all CMs. Each CM must be considered individually with respect to the resources available. To determine if a device can support a CM using a specified number of processors, the following must be true:

\[p \times \left\lceil \frac{\text{AverageMemPerProc}}{6\times \text{NumEntriesPerBRAM}} \right\rceil \leq \text{NumBRAMsAvailable} \]

The logic requirements for the processor array architecture, in terms of both look-up tables (LUTs) and the equivalent gate count, are shown in Table V and illustrated in Figures 26 and 27. While the resource requirements for the processing elements and the Banyan switch scale linearly, the Batcher switch does not. Moreover, as shown in Figure 27 the logic requirements for the Batcher switch quickly dwarf the logic requirements for other key components of the architecture. Note that the logic requirements for the Batcher switch closely follow the total logic requirements of the complete architecture. When using a single processor in

Fig. 26: Resource requirements for the processing elements and Banyan switches in different sized processor arrays.
the processor array, the Batcher switch accounts for almost 60% of the logic resources. This quickly grows to about 90% of the total resources when using only 21 processors.

Given the rapid growth of the Batcher switch, the logic requirements quickly become the limiting factor in terms of the number of processors that can be deployed on today’s devices. Even though the Xilinx Virtex-5 has enough block RAMs to support up to 100 processors, with only 200K LUTs, the device is limited to fewer than 20 processors. However, with ASIC devices currently supporting over 1.5 billion transistors [Shiveley 2006], 340 or more processors on an ASIC is possible.

7.4.2 I/O Requirements. This section examines the I/O requirements of the processor array architecture. There are three components to the I/O: the score output, the residue input, and the instruction input.

As described in Section 5.4, only a single processing element (PE0) outputs alignment scores. Furthermore, scores are only output for state $v = 0$, meaning that the number of potential scores that need to be output consists of only a small fraction of the overall computation. Because only scores that exceed some predetermined threshold are output, the number of scores output will generally be much less than the total number of scores in state $v = 0$. For the CMs in Table IV, as well as many others from the RFAM database, the size of the output scores for a single window W is typically less than a few hundred KBytes. This translates to an average required output bandwidth of approximately 5 MBps for a single processor configuration and approximately 400 MBps for a 256 processor configuration when
The residue input consists of a single new residue for each window \(W \) of the computation. Because each residue can be represented with only a few bits of information, and each window may contain millions of instructions, the residue input is insignificant when compared to the instruction input. When running the processor array architecture at 250 MHz, the bandwidth required for the residue input is on average less than 1 KByte for a single processor configuration and approximately 5 KBytes for a 256 processor configuration.

The instruction input is the main component of the I/O and is the limiting factor for processor array architecture. The instruction input consists of a stream of instructions for each processor in the processor array that identifies the computations for each processor. As the number of processors increases, the number of instructions that must be streamed to the processor array architecture also increases. Additionally, increasing the number of processors also increases the size of each instruction that must be streamed to the architecture. As described in Section 5.2.1, each instruction consists of up to six memory addresses from which to read memory and a single memory address to which the result should be written. As the number of processors increases, the number of address bits required to access each of the individual memories in the shared memory structure also increases.

Table VI shows the instruction sizes required for different configurations of the processor array architecture. Also shown in Table VI is the number of instruction bits per clock cycle that must be provided to the processor array to fully utilize all of the available processors. This value can be used to determine the required input bandwidth for streaming instructions to the processor array architecture. The bandwidth requirements shown in Table VI are for a processor array architecture running at 250 MHz.

At first glance the bandwidth required for streaming instructions to the processor array seem a bit daunting. However, the actual schedules tend to be only several hundreds of MBytes in size. When divided over a couple of processors, the size of the schedule assigned to each processor is typically around 50 MBytes. When using a large number of processors in the processor array, the size of the schedule assigned to each processor can be less than 1 MByte. Furthermore, the same schedule is reused for each window of the computation. Therefore, providing each processor in

<table>
<thead>
<tr>
<th>Processor Array Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num Procs</td>
</tr>
<tr>
<td>Num Memories</td>
</tr>
<tr>
<td>Switch Ports</td>
</tr>
<tr>
<td>Port Address Bits</td>
</tr>
<tr>
<td>In Switch Port Size</td>
</tr>
<tr>
<td>Out Switch Port Size</td>
</tr>
<tr>
<td>Instruction Size</td>
</tr>
<tr>
<td>I/O Requirements (bits)</td>
</tr>
<tr>
<td>I/O Requirements (Gbps)</td>
</tr>
</tbody>
</table>

Table VI: The instruction sizes and bandwidth required for streaming instructions to the processor array architecture.
the processor array architecture with a small SRAM or DRAM for schedule storage could provide the bandwidth necessary to keep all of the processors in the processor array architecture busy.

7.5 Comparison to Infernal Software

To determine the effectiveness of the processor array architecture, this section compares its estimated runtime to that of the INFERNAL software package. While some results are presented in this paper, additional results can be found in [Moscola 2008].

The evaluation system for the INFERNAL software contains dual Intel Xeon 2.8 GHz CPUs and 6 GBytes of DDR2 SDRAM running Linux CentOS 5.0. INFERNAL was run with the –toponly and –noalign options to ensure that INFERNAL was not doing more work than the processor array architecture. Results were collected for both the standard version of INFERNAL as well as INFERNAL using the Query Dependent Banding (QDB) heuristic [Nawrocki and Eddy 2007]. The runtime represents the time it took, in seconds, for INFERNAL to process a randomly generated database of 1 million residues. The database search algorithm that is executed by INFERNAL is equivalent to the algorithm presented in Section 3.3 which does not require a traceback algorithm. Since no traceback is required, the contents of the residue database have no affect on the runtime.

The results for the processor array architecture are an estimate based on several factors including: the number of computations required to process a database of 1 million residues, the efficiency of the schedule, the number of processors available, and the clock frequency of the processor array. For the estimates in this section, a clock frequency of 250 MHz was used.

Table VII shows the results for four different CMs using 16, 32, and 64 processors. In the table, Total Computations represents the total number of computations required to compute the results for a database of 1 million residues. This value includes all of the computations, including the expanded computations required for scheduling the DP matrix cells from bifurcation states. The efficiency value was

<table>
<thead>
<tr>
<th>CM</th>
<th>Total Computations</th>
<th>Efficiency</th>
<th>Total Cycles</th>
<th>Schedule Length</th>
<th>Time (seconds)</th>
<th>Infernal Time (seconds)</th>
<th>Infernal Time (QDB) (seconds)</th>
<th>Speedup over Infernal</th>
<th>Speedup over Infernal (w/QDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Processors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF0001</td>
<td>52178389429</td>
<td>71.4</td>
<td>73072036714</td>
<td>459700529</td>
<td>16.27</td>
<td>3494.92</td>
<td>1284.43</td>
<td>191.31</td>
<td>70.31</td>
</tr>
<tr>
<td>RF0016</td>
<td>6212487523</td>
<td>95.74</td>
<td>64804170989</td>
<td>4052036891</td>
<td>16.22</td>
<td>3360.00</td>
<td>1865.21</td>
<td>167.14</td>
<td>71.65</td>
</tr>
<tr>
<td>RF0034</td>
<td>50178556254</td>
<td>53.09</td>
<td>94712920739</td>
<td>5608026595</td>
<td>25.59</td>
<td>3148.35</td>
<td>875.20</td>
<td>133.44</td>
<td>47.70</td>
</tr>
<tr>
<td>RF0041</td>
<td>593859512497</td>
<td>100.96</td>
<td>90944404795</td>
<td>5505325303</td>
<td>22.26</td>
<td>3891.56</td>
<td>1166.92</td>
<td>174.36</td>
<td>53.32</td>
</tr>
<tr>
<td>32 Processors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF0001</td>
<td>52178389429</td>
<td>53.75</td>
<td>9770102516</td>
<td>30334629541</td>
<td>12.13</td>
<td>3494.92</td>
<td>1284.43</td>
<td>288.03</td>
<td>105.85</td>
</tr>
<tr>
<td>RF0016</td>
<td>6212487523</td>
<td>91.44</td>
<td>87308599401</td>
<td>2132811895</td>
<td>8.49</td>
<td>3360.00</td>
<td>1865.21</td>
<td>355.70</td>
<td>122.32</td>
</tr>
<tr>
<td>RF0034</td>
<td>50178556254</td>
<td>40.32</td>
<td>12246745004</td>
<td>3862518191</td>
<td>15.30</td>
<td>3148.35</td>
<td>875.20</td>
<td>205.71</td>
<td>57.18</td>
</tr>
<tr>
<td>RF0041</td>
<td>593859512497</td>
<td>68.69</td>
<td>90944404795</td>
<td>5505325303</td>
<td>22.26</td>
<td>3891.56</td>
<td>1166.92</td>
<td>174.36</td>
<td>53.32</td>
</tr>
<tr>
<td>64 Processors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF0001</td>
<td>52178389429</td>
<td>36.85</td>
<td>14156158628</td>
<td>2213220897</td>
<td>8.65</td>
<td>3494.92</td>
<td>1284.43</td>
<td>394.98</td>
<td>145.15</td>
</tr>
<tr>
<td>RF0016</td>
<td>6212487523</td>
<td>83.96</td>
<td>75149098204</td>
<td>1174231495</td>
<td>6.70</td>
<td>3360.00</td>
<td>1865.21</td>
<td>713.37</td>
<td>491.18</td>
</tr>
<tr>
<td>RF0034</td>
<td>50178556254</td>
<td>25.17</td>
<td>199003981945</td>
<td>3109529494</td>
<td>12.44</td>
<td>3148.35</td>
<td>875.20</td>
<td>253.12</td>
<td>70.36</td>
</tr>
<tr>
<td>RF0041</td>
<td>593859512497</td>
<td>32.05</td>
<td>14525543606</td>
<td>2694416188</td>
<td>11.58</td>
<td>3891.56</td>
<td>1166.92</td>
<td>335.24</td>
<td>102.51</td>
</tr>
</tbody>
</table>

Table VII: Estimated runtime and speedup of processor array architecture over INFERNAL software package. Estimate is based on a processor array running at 250 MHz.
determined in Section 7.2 for a single window of the alignment computation. The total number of cycles required for processing 1 million residues, including idle time, is estimated as \(\frac{\text{TotalComputations}}{\text{Efficiency}} \). Because those cycles are divided evenly across \(p \) processors, the actual length of the schedule is \(\frac{\text{TotalCycles}}{p} \). The time to process the schedule varies with the frequency at which the processor array architecture can process the schedule. For the comparison presented in this section, the frequency of the processor array architecture is assumed to be 250 MHz. The times listed in Table VII for the processor array architecture are computed as \(\frac{\text{ScheduleLength}}{250 \text{MHz}} \). For comparison the table lists the time required for both the standard \textsc{Infernal} software package and the \textsc{Infernal} software package when using the QDB heuristic. The speedup represents the speedup of the processor array architecture over the \textsc{Infernal} software package.

Figure 28 illustrates the estimated time to align 1 million residues to a CM when using between 1 and 256 processors in the processor array. Results for four different CMs are shown. The shortest bars represent the time required when using 256 processors. The longest bar represents the time required when using a single processor. The bars in between represent the time required when using 128, 64, 32, 16, 8, 4, and 2 processors.

![Figure 28: The estimated time to align a 1 million residue database to four different CMs using varying numbers of processors. The shortest bar represents the time to compute the results using 256 processors. The longest bar represents the time to compute the results using a single processor.](image)

Figure 29 compares the estimated time for the processor array architecture to the time for the \textsc{Infernal} software package. The bars showing the results for the processor array architecture are the same as those shown in Figure 28 but on an expanded time scale. The bars showing the results of the \textsc{Infernal} software package contain the results for both the standard \textsc{Infernal} software and the \textsc{Infernal} software when using the QDB heuristic. The shorter bar represents the results when using the QDB heuristic. The longer bar represents the results when using the standard \textsc{Infernal} software.

Based on the results in this section, when running at 250 MHz the processor array architecture can achieve an estimated speedup of 11\(\times \) to 18\(\times \) over the standard \textsc{Infernal} software package. With 64 processors, the processor array architecture...
Fig. 29: A comparison of the estimated time to align a 1 million residue database using the processor array architecture versus the time required for INFERNAL. The shorter bar in the INFERNAL categories represents the time when using the QDB heuristic. The longer bar represents the time without QDB.

can achieve an estimated speedup of $250\times$ to $970\times$. If provided enough hardware resource to employ 256 processors, the processor array architecture can achieve up to an estimated $2,350\times$ over the INFERNAL software package.

8. SUMMARY

In this work two architectures were introduced for accelerating the task of finding homologous RNA molecules in a genome database. The first architecture presented, the baseline architecture, consists of a pipeline of processing elements, each of which represents a single computation from the three-dimensional dynamic programming matrix. The processing elements are connected based on the the structure of the covariance model. An implementation of the baseline architecture was developed for a small CM and showed a $24.5\times$ improvement over the INFERNAL software package. Additionally, the performance of the baseline architecture was estimated for covariance models from the Rfam database. The baseline architecture showed an estimated speedup of over $9,000\times$ for one of the models tested.

The second architecture presented, the processor array architecture, utilizes an array of processing elements and a multi-port shared memory structure to share data between processors. Additionally, a scheduling algorithm was presented that takes as input a covariance model and outputs a schedule for the processor array architecture. The scheduling algorithm accounts for all processor and memory conflicts thereby eliminating the need for buffering and/or conflict resolution in hardware.

An analysis of the processor array architecture and the scheduler was also presented. As should be expected, the time required to perform an alignment computation decreases as the number of processors in the processor array increases. The memory required to process a sequence with a specified CM stays almost constant as the number of processors in the array is increased.

Additionally, the scalability of the architecture was examined. The hardware resources for many of the key components in the architecture scale linearly. However, the Batcher switch in the shared memory structure does not, and quickly becomes...
the limiting component of the architecture.

Finally, the processor array architecture was compared to the INFERNAL software package. The speedup achievable by the processor array was estimated based on the schedule length for an alignment. The estimated speedup for the processor array architecture over the INFERNAL software package ranged from under 20× to over 2,350×.

REFERENCES

Received December 2008