GENETICS (BIO240)
Syllabus

Instructor: Ron Kaltreider, Ph.D. Email: rkaltrei@ycp.edu
Office: LS207 Office Phone: 815-1956

Textbooks:
 Text: Concepts of Genetics, Klug, Cummings, Spencer, and Palladino Pearson
 Benjamin Cummings.
 Lab Notebook: Composition Book (bound)
 Lab Manual: None. Lab write-ups are available on Blackboard.

Websites:
 Textbook: Publishers website contains links to a variety of web-based resources,
 including a very helpful self-testing problem set for each chapter.
 Instructor: Course Blackboard site contains lecture notes, assignments, exam
 study guides, and a link to the textbook website. The assignments and
 lecture notes will be continually updated throughout the semester.

Prerequisites:
You should have received a grade of 2.0 or better in Biology I (BIO150) and General
Chemistry I (CHM134).

Course Description and Objectives:
Although the principle concepts of genetics have been known for only 100 years, genetic
selection has been conducted for many centuries on domesticated animals (i.e. dogs) and
food crops (i.e. corn). The field of genetic research, although still in its infancy, represents
a fundamental aspect of human biology. While recent advances in genetic research have
provided a greater ability to diagnosis and treat various human abnormalities, such as cancer,
they have also produced many ethical and political considerations, which are still hotly debated
and remain unresolved. This class will provide you with an understanding of the principles
and concepts of genetics. Specific objectives of this course are to provide an understanding
and discuss ramifications of: 1) Inherence, 2) Gene Structure, 3) Gene Function, 4) Gene
Mutation, and 5) Ethical issues related to genetic research and its applications.
Examinations and Grades:
Grading Scheme: Lecture (60%) and Laboratory (40%)

- First Exam: 100 pts 4 = 90% and above
- Second Exam: 100 pts 3.5 = 85-89%
- Third Exam: 100 pts 3 = 80-84%
- Forth Exam: 100 pts 2.5 = 75-79%
- Laboratory: 480 pts 2 = 70-74%
- Total: 880 pts 1 = 60-69%
- 0 = 59% and below

Exams:
The lecture schedule shows the approximate date of the first 3 exams. The 4th exam will be given during final exam week and is NOT a comprehensive exam. Barring documented illness or family emergency, failure to take the exam at the scheduled time will result in a grade of ZERO for that exam. Please try to contact me prior to the scheduled exam period, although if an emergency should arise (i.e. a 2 AM trip to the emergency room) do not “stress-out” about getting in touch with me immediately just inform me at your earliest convenience.

Attendance:
Lecture: All students are expected to attend all scheduled classes. Conceptual understanding of Genetics, like all science courses, requires students to actively engage and interact with colleagues. Although I will not take daily attendance, I will monitor and note excessive absenteeism. Chronic tardiness to lecture or lab is very disruptive to the class. Please be on time. I will not directly penalize you for excessive absences or tardiness, although they may affect your grade through the following: 1) Student becomes responsible for obtaining the lecture notes and handouts from his/her fellow students, 2) Grades will NOT be rounded in the students favor (a 79.9 is a 2.5 not a 3.0), and 3) In class assignments (Quizzes) cannot be made up.
Lab: Attendance for lab is mandatory.

Assignments:
Lab Reports: There will be one complete (Gene Cloning) and one outlined lab (Flower Breeder) report for this course. The complete lab report will contain the following sections: Abstract, Introduction, Materials and Methods, Results including Figures and Tables with captions, Discussion, and References. The outlined report is based on computer-generated data and will prepare you for the interpretation of the Results section in your Brassica report. Reports are to be submitted electronically.

Lab Assignments: Each of the genetics labs has an assignment that must be completed by the student. These will be collected at the beginning of the next lab period. Assignments are to be submitted electronically.

Problem Sets: Problem sets will be assigned for each chapter covered during lecture periods. These problems will not be collected and graded, but students are strongly advised to work through the problems. Material from the problem sets may be included on examinations.
Late Work: All assignments are due within the first 10 minutes of class on the date indicated. Grades on late assignments will reflect a 10% deduction per day late unless prior arrangements have been made with the instructor. All assignments are due by the LAST day of classes; I will not accept assignments after this date.

Regrading Policy: If you think that an error was made on your exam or lab report, you may return it for re-grading within one week of the return of the exam/report. No exceptions. Also you must clip to the graded item a typed explanation of what you think the error in grading. Late re-grade requests and requests that are not typed will not be regarded. Note: I routinely photocopy exam pages prior to returning them to you (See Academic Honor Principle).

Standards:

Writing standards: You are expected to use proper English grammar and spelling on all written material submitted for this course. Content of your writing will be my main focus during grading, although your effectiveness at writing will also be considered in your overall grade. The Learning Resource Center is available to all students seeking to improve their writing and study skills.

Exams: Lecture exams will consist of short answer, problems, and multiple-choice problems. Questions will be based on material covered in class, which includes readings from the text. Test questions may also come from specific and assigned text readings, which were not covered in Lecture.

Lab Notebooks: All students must keep a laboratory notebook (bound composition book). This book is a written account of all the experiments conducted by the student. It should contain: date experiment conducted, colleagues involved, experimental description (what the goals and/or objectives of this experiment), protocol followed (any changes to the protocol), data collected and observations (including raw data and analyzed data: graphical of tabular format) written or taped into the book, a short summary and/or conclusion to the experiment (an interpretation of all the collected; i.e. what it all the data means). The ending questions of the experiment will help to guild you towards the appropriate conclusions. Notebooks will be graded at the end of the semester for extra credit.

Students with disabilities: Students with disabilities, physical or learning, are encouraged to contact me within the first week of class so that we have time to implement any accommodations required. Through consultation with the Academic Advising and Learning Resource Center, we will plan an appropriate strategy for completing the academic requirements of the class.
Science and the teaching of science represent a search for truth and they rest on ethical behavior and intellectual honesty. As such, both the Department of Biological Sciences and York College of Pennsylvania unequivocally condemn academic dishonesty. Academic dishonesty is defined in the York College Student Handbook as cheating, plagiarism, fabricating research, falsifying academic documents, etc. and includes all situations where students make use of the work of others and claim such work as their own. Because the Department of Biological Sciences maintains high expectations for all students and is committed to stringent standards of academic integrity, we contend that all published information, in any form, must not be used unless rigorously paraphrased and properly cited. Moreover, all tests, projects, assignments, and lab reports require a solo effort unless specifically noted otherwise by the instructor. This means that the sharing of text, images, tables, figures, or data analyses with classmates is a breach of academic integrity. Furthermore, providing such information to others will be considered as dishonest as accepting or taking the information.

Work done in lab may involve partners, but the formal partnerships end when the laboratory period ends. At the end of a lab, each partner should leave with his or her group’s protocols, hypotheses, data, and any information about procedural problems. Once the in-lab work is completed, the work shifts from a group effort to a solo effort. This does not mean that students shouldn’t discuss lab concepts, problems, and general strategies and broad interpretations. Talking about science is healthy and is encouraged. And, it is understood that lab groups may obtain similar or identical quantitative data for a given project. In the end, however, data analyses and report writing as well as the overall presentation and interpretation of these data are to be done independently by the individual and not by the group.

If work submitted by two or more students appears unexplainably and unreasonably similar, or if credit for previously published information or ideas is not given through literature citation, academic dishonesty will be assumed. In this event, the instructor will provide written notification to the student, the Department Chair, and the Dean of Academic Affairs of the charge and the sanction. Documentation related to instances of academic dishonesty will be kept on file in the student’s permanent record. If the academic dishonesty is the student’s first offense, the instructor will have the discretion to decide on a suitable sanction up to a grade of 0 for the course. The faculty member may request that the Student Welfare Committee conduct a hearing and decide on the sanction, which can involve academic suspension or dismissal from the College, if the faculty member believes the offense to be of an extremely egregious nature.

If the Dean of Academic Affairs determines that the breach of academic integrity is the student’s second offense, the Dean will provide written notification to the student, the instructor, and the Department Chair. The Student Welfare Committee will automatically conduct a hearing to review the charge and decide on an appropriate sanction, which will involve academic suspension or dismissal from the College. Students are not permitted to withdraw from a course in which they have been accused of academic dishonesty.

If questions about academic integrity arise, see the course instructor before completing and submitting your work. In addition, specific information about the York College of Pennsylvania Academic Integrity Policy can be found in the most recent edition of the Student Handbook.
Lecture Sequence and Assignment Information: This is only an outline of the information covered during lecture periods. Please refer to my website to get the specific reading and problem set assignments.

Chapter and Lecture Topics:

Chapters 1-4: Mendelian Genetics and
- Chapter 1: Introduction to Genetics
- Chapter 2: Mitosis and Meiosis
- Chapter 3: Mendelian Genetics
- Chapter 4: Extensions of Mendelian Genetics

 Exam #1

Chapters 5-7: Linkage and Mapping, Sex Determination
- Chapter 5: Chromosome Mapping in Eukaryotes
- Chapter 6: Genetic Analysis and Mapping in Bacteria and Bacteriophages
- Chapter 7: Sex Determination and Sex Chromosomes

 Exam #2

Chapters 8 and 10-12: Chromosomes and DNA Structure
- Chapter 8: Chromosome Mutations
- Chapter 10: DNA Structure and Analysis
- Chapter 11: DNA Replication and Recombination
- Chapter 12: DNA Organization in Chromosomes

 Exam #3

Chapters 13-17: Genetic Organization, Expression and Regulation
- Chapter 13: Genetic Code and Transcription
- Chapter 14: Translation into Proteins
- Chapter 15: Gene Mutation and DNA
- Chapter 16: Gene Expression: Prokaryotes

 Exam #4

Disclaimer: This course outline is tentative and subject to change.
Lab Schedule

Lab#1:
A) Safety; Notebooks; Scientific Method; Micropipetting.
B) Mitosis and Meiosis Microscope; Chromosome simulation: Allele segregation and sorting. Design of experiments; Chi Square tests.
 Assignment: Questions

Lab#2:
 DNA Restriction Digest analysis. Genotypic vs. Phenotypic analysis; Prism.
 Assignment: Questions and Standard Curve graph. Results Section

Lab#3:
A) Rapid Colony Transformation of E. Coli.
B) Flower Breeder
 Assignment: Questions, Transformation graphs and Flower Breeder.

Lab#4:
A) Analyze Plates and determine transformation efficiency. Discuss Transformation efficiency. Discuss: Standard curves
B) Gene cloning and sequencing experiment: DNA Extraction and PCR
 Assignment: Questions.

Lab#5:
A) Gene cloning and sequencing experiment: Restriction Digest and Nested PCR
B) Isolation/Quantification of Genomic DNA
 Assignment: Questions

Lab#6:
A) Gene cloning and sequencing experiment: Purify PCR products
B) Gene cloning and sequencing experiment: Ligation and Transformation
 Assignment: Questions.

Lab#7:
A) Gene cloning and sequencing experiment: Miniprep and Restriction Digest
B) Amplification and Sequencing of Mitochondrial DNA
 Assignment: Questions

Lab#8: Gene cloning and sequencing experiment: Sequencing Reaction
B) Mitochondrial PCR reaction: Gels
 Assignment: Questions.

Lab#9:
A) DNA Fingerprinting analysis. Comparison of suspect DNA with a crime scene sample. Restriction Digest based
B) **Detection of Alu Insertion by PCR**

Assignment: Short report with standard curve graph

Lab#10

A) DNA Fingerprinting analysis: Run Gel
B) Plasmid Mapping
C) **Detection of Alu Insertion : Gel**
D) **DNA Fingerprinting analysis:** Comparison of suspect DNA with a crime scene sample. PCR

Assignment: Questions and Plasmid Maps.

Lab#11:

A) **Gene cloning and sequencing experiment:** Bioinformatics (Sequence Analysis)
B) Mitochondrial Sequence Analysis
C) **DNA Fingerprinting analysis:** Comparison of suspect DNA with a crime scene sample. Gel
D) Review for Lab Practical

Assignment: Questions. Gene Cloning IMRAD Paper

Lab Practical

Disclaimer: This course outline is tentative and subject to change.
Science and the teaching of science represent a search for truth and they rest on ethical behavior and intellectual honesty. As such, both the Department of Biological Sciences and York College of Pennsylvania unequivocally condemn academic dishonesty. Academic dishonesty is defined in the York College Student Handbook as cheating, plagiarism, fabricating research, falsifying academic documents, etc. and includes all situations where students make use of the work of others and claim such work as their own. Because the Department of Biological Sciences maintains high expectations for all students and is committed to stringent standards of academic integrity, we contend that all published information, in any form, must not be used unless rigorously paraphrased and properly cited. Moreover, all tests, projects, assignments, and lab reports require a solo effort unless specifically noted otherwise by the instructor. This means that the sharing of text, images, tables, figures, or data analyses with classmates is a breach of academic integrity. Furthermore, providing such information to others will be considered as dishonest as accepting or taking the information.

Work done in lab may involve partners, but the formal partnerships end when the laboratory period ends. At the end of a lab, each partner should leave with his or her group’s protocols, hypotheses, data, and any information about procedural problems. Once the in-lab work is completed, the work shifts from a group effort to a solo effort. This does not mean that students shouldn’t discuss lab concepts, problems, and general strategies and broad interpretations. Talking about science is healthy and is encouraged. And, it is understood that lab groups may obtain similar or identical quantitative data for a given project. In the end, however, data analyses and report writing as well as the overall presentation and interpretation of these data are to be done independently by the individual and not by the group.

If work submitted by two or more students appears unexplainably and unreasonably similar, or if credit for previously published information or ideas is not given through literature citation, academic dishonesty will be assumed. In this event, the instructor will provide written notification to the student, the Department Chair, and the Dean of Academic Affairs of the charge and the sanction. Documentation related to instances of academic dishonesty will be kept on file in the student’s permanent record. If the academic dishonesty is the student’s first offense, the instructor will have the discretion to decide on a suitable sanction up to a grade of 0 for the course. The faculty member may request that the Student Welfare Committee conduct a hearing and decide on the sanction, which can involve academic suspension or dismissal from the College, if the faculty member believes the offense to be of an extremely egregious nature.

If the Dean of Academic Affairs determines that the breach of academic integrity is the student’s second offense, the Dean will provide written notification to the student, the instructor, and the Department Chair. The Student Welfare Committee will automatically conduct a hearing to review the charge and decide on an appropriate sanction, which will involve academic suspension or dismissal from the College. Students are not permitted to withdraw from a course in which they have been accused of academic dishonesty.

If questions about academic integrity arise, see the course instructor before completing and submitting your work. In addition, specific information about the York College of Pennsylvania Academic Integrity Policy can be found in the most recent edition of the Student Handbook.

I, __________________________, have read this statement and the syllabus for this course and I understand and accept departmental and college expectations of academic integrity and ethical conduct.

Student’s Name: (Please Print) __

Kaltreider
Genetics